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ABSTRACT
This paper presentsMITra, a framework for composing multi-in-
stance graph algorithms that traverse from multiple source vertices
simultaneously over a single thread. UnderlyingMITra is a model
of multi-instance traversal that uniformly captures traversal shar-
ing across instances. Based on this,MITra provides a programming
model that allows users to express traversals by declaring vertex
ranks and specify computation logic via an edge function. It synthe-
sizes multi-instance traversal algorithms from declared vertex ranks
and edge functions adopted from classic single-instance algorithms,
automatically sharing computation across instances and benefit-
ing from SIMD. We show thatMITra can generate multi-instance
algorithms provably better than existing ones, while being more
expressive than traditional frameworks. In addition to the ease of
programming, we experimentally verify thatMITra is on average
an order of magnitude faster than approaches based on existing
frameworks for common graph algorithms, and is comparable to
the state-of-the-art highly optimized one-off algorithms.
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1 INTRODUCTION
Multi-instance processing (MIP) over large graphs is of increasing
importance due to its applications in e.g., social networks, bioinfor-
matics, and web search [12, 24, 28, 29, 31, 39, 41, 48, 57]. It refers to
the evaluation of multiple instances of the same query over the same
graph but with different source vertices as input, e.g., computing
shortest paths from hundreds of vertices [13, 29, 57] simultaneously.

There are mainly two approaches to MIP. The first is highly opti-
mized one-off MIP algorithms that compute answers to all sources
simultaneously, by aligning and sharing computations among the
sources. They are crafted for a specific graph computation, e.g.,MS-
BFS [48] for BFS, and implement heavy algorithm-specific optimiza-
tions and heuristics. The other approach, referred to as serial algo-
rithms, runs the instances in serial one by one, often by employing
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general-purpose graph frameworks [32, 35, 45, 55, 59, 61]. They are
much easier to use due to the higher level framework interface, but
tend to be less efficient due to the lack of sharing across instances.

This raises a question: can we have the best of both worlds? Can
we have a framework with the interface of general-purpose frame-
works while retaining the performance of one-off MIP algorithms?
MITra. To answer the question, we developMITra, a framework
for Multi-Instace graph Traversal computations.
(1) Ease of programming. MITra provides an edge-centric program-
ming model that allows users to compose MIP algorithms that
process a set of sources in one go with a single thread. WithMITra,
one can specify traversal logic by declaring numeric ranks for ver-
tices and express query-dependent computation logic via an edge
function, which is almost identical to those found in textbook single-
instance graph algorithms. MITra synthesizes fully functional MIP
algorithms from declared vertex ranks and edge functions.
(2) Optimization.MITra offers capabilities similar to those of one-
off MIP algorithms for sharing computations among instances, but
does so through an unified interface. This allows users to enjoy
the optimizations of one-off MIP algorithms without the need to
implement low-level subtleties, e.g., aligning and sharing traversals,
and proper application of SIMD (single-instruction-multiple-data).
(3) Expressiveness. With MITra, one can compose common graph
traversal algorithms for their MIP cases. By virtue of its underlying
algorithm model, MITra covers a wide range of graph algorithms,
more expressive than traditional frameworks. Moreover, it even
allows us to compose new algorithms that are particularly efficient
for MIP, e.g., a new MIP algorithm for graph reachability that is
provably more efficient than existing ones on each and every graph.
(4) Performance. The ease of programming does not imply perfor-
mance degradation compared to state-of-the-art one-off MIP algo-
rithms and methods built upon general-purpose graph frameworks.
For instance, over Twitter [8] with 4.16 million vertices and 1.47
billion edges and 256 sources,MITra is 33.56, 140.61, 6.7, 7.88 and
13.14 times faster than framework-based approaches for BFS, Reach-
ability, Bellman-Ford, personalized PageRank and SpMV respec-
tively; it is comparable to the highly engineered one-off MS-BFS
[48] for BFS and even 1.73 times faster for graph reachability.
Frontier-ranking model. The foundation of MITra is a model
called frontier-ranking algorithm. It provides a systematic approach
to viewing and designing graph traversal algorithms, by separating
traversal logic from computation logic. It expresses traversal logic
via a numeric vertex property called ranks and compresses com-
putation logic as edge functions. While computation logic is often
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application/query dependent and varies a lot, traversal logic is much
more regular and hence can be specified by declaring vertex ranks.

Frontier-ranking algorithms interpret traversal logic by organiz-
ing vertices into frontiers, determining the order in which the fron-
tiers are explored, and identifying sharing opportunities. The entire
process is guided by arithmetic operations over vertex ranks, hid-
den from users. This enables MITra to provide a rather simple, yet
powerful, interface for composing multi-instance algorithms. Users
only need to focus on computation logic from the view of an edge,
in an edge function 𝑓 (𝑒). MITra synthesizes full MIP algorithms
that track and align traversal progresses of multiple instances via
their vertex ranks, invoke 𝑓 (𝑒) for the correct set of instances, and
automatically extract sharing of edge accesses and invocations to
𝑓 (𝑒) without impairing the correctness of each individual instance.

By varying vertex ranks, one can compose existing and new
graph algorithms for their MIP cases. Indeed, MITra can express
common graph computations, even those that are not expressible
in existing graph frameworks, e.g., Dijkstra. Moreover, the choice
of ranks implies the level of sharing that one could get fromMITra.

The use of numeric vertex properties also gives rise to MITra
arithmetic operators, with which users can write MIP algorithms by
adopting textbook single-instance algorithms with minimal efforts.
MITra operators also benefit from e.g., SIMD from modern CPUs.
Contribution. In summary, we make the following contributions:
• We propose a model for multi-instance graph algorithms. We

show that it is effective for multi-instance computations andmore
expressive than existing graph computation models (Section 3).

• Based on the model, we develop MITra, a programming frame-
work for multi-instance graph computations (Section 4). We
present its interface and show how it synthesizes MIP algorithms.
We also discuss its implementation and optimizations.
• We show that with MITra one can write multi-instance algo-

rithms as simple as their single-instance counterparts (Section 5).
• We empirically verify thatMITra outperforms approaches built

on traditional graph frameworks by an order of magnitude, com-
parable to highly optimized one-off MIP algorithms (Section 6).

2 PRELIMINARIES

Graphs. A graph is denoted by 𝐺 (𝑉 , 𝐸,𝑤), where 𝑉 is the set of
vertices, 𝐸 ⊆ 𝑉 × 𝑉 is the set of edges of 𝐺 , 𝑤 is a function that
assigns each edge 𝑒 ∈ 𝐸 a weight𝑤 (𝑒). As usual, we assume that
there is an iterator that, given a vertex 𝑣 ∈ 𝑉 , returns all neighbors
of 𝑣 in 𝐺 in some deterministic order, e.g., increasing in vertex IDs.
Graph queries. We consider the below queries over graph 𝐺 .
Graph search. We consider two graph search queries:
(a) BFS. A BFS query over 𝐺 is specified by a vertex 𝑠 called source;
it returns a Breadth-First-Search tree [16] or the distance of each
vertex from 𝑠 when the weight𝑤 (𝑒) of each edge is 1 [45, 48].
(b) Reachability search. A graph reachability query [46] over𝐺 starts
from a source vertex 𝑠 and returns all vertices that are reachable
from 𝑠 in 𝐺 ; these can be found with a BFS starting from 𝑠 [18].
Shortest path. Single-source shortest path (SSSP) queries find a
shortest path from a source 𝑠 to every vertex in an edge-weighted

graph that is reachable from 𝑠 . Popular algorithms for SSSP include,
e.g., Bellman-Ford [16], Dijkstra [16] and Δ-stepping [34].
Personalized PageRank (PPR) is the probability that a random walk
in 𝐺 from 𝑠 terminates at 𝑡 , which has been used to measure the
bidirectional importance between 𝑠 and 𝑡 [36, 51, 52]. A PPR query
asks, given a source 𝑠 , the PPR value from 𝑠 to every vertex in 𝐺 .
Sparse matrix-vector multiplication (SpMV)multiplies the adjacency
matrix 𝐴 (transposed) of graph𝐺 with a vector 𝑥 of values, one per
vertex; it is used in Graph/Recurrent Neural Networks [40], Topic
Search [25], and Belief Propagation [22]. It has been a common
practice to use graph frameworks to compute 𝐴𝑥 , by treating 𝑥 as
a ‘virtual’ vertex 𝑣𝑥 and casting 𝐴𝑥 as a graph traversal step from
𝑣𝑥 in 𝐺 [17, 27, 42, 47]. Given an 𝑥 , an SpMV query computes 𝐴𝑥 .
Multi-instance computation. Consider a graph 𝐺 and graph
query class Q, e.g., reachability. A multi-instance processing (MIP)
algorithm for Q computes, given a set of sources 𝑠1, . . . , 𝑠𝑘 , the
results to each source 𝑠𝑖 , e.g., vertices of𝐺 that are reachable from 𝑠𝑖 .

In this paper, we consider MIP algorithms over a single thread,
and study how to compute the answers to multiple sources in one
go, in an interleaved manner. There are two existing approaches.
(1) Specialized one-off algorithms that exploit deep algorithm-spe-
cific optimizations, e.g.,MS-BFS [48] for multi-instance BFS with
algorithm-specific optimization ranging from CPU register align-
ment to pre-fetching, and to algorithmic heuristics; similarly for
MS-Dijkstra [57], a one-off Dijkstra variant for multi-instance SSSP.
(2) Serial algorithms that compute answers to each source serially,
one after another, by employing convenient graph frameworks.

Our goal is to developMITra, an MIP framework that provides
the best of both worlds: (a) comparable performance to one-off
algorithms and (b) ease of use and simplicity of graph frameworks.

3 MODELING MULTI-INSTANCE TRAVERSALS
UnderlyingMITra is a model of multi-instance graph computations,
referred to as the frontier-ranking model. Below we first present
the model (Section 3.1). We then justify its novelty by proving its
effectiveness (Section 3.2) and expressive power (Section 3.3).

3.1 The Frontier-Ranking Model
Foundational to MITra is the frontier-ranking model that abstracts
one-off styleMIP graph algorithms. It models traversals by means
of a numeric vertex property called ranks, expresses interleaving
traversal logic across multiple instances via numeric operations on
vertex ranks, and separates it from application specific computation
logic encapsulated in edge functions. In doing so, it pushes house-
keeping for multi-instance computations into numeric computa-
tions on ranks instead of imperative instructions in edge functions.
Single-instance frontier-ranking. For readability, we first present
frontier-ranking algorithms for single-instance traversals.

Given source 𝑠 of graph 𝐺 , a single-instance frontier-ranking
algorithmA traverses𝐺 in rounds starting from 𝑠 . In each round a
frontier F is explored and one or more new frontiers are generated.
Frontiers are maintained in order via a structure denoted by F.

More specifically, as shown in Fig. 1(a),A traverses𝐺 as follows:
(1) Initially, F consists of a single frontier for source 𝑠 .
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Figure 1: frontier-ranking algorithms

(2) For each round 𝑗 , it explores the top frontier F from F for the
current round, by exploring each vertex 𝑢 ∈ F, as follows:
(a) for each edge 𝑒 = (𝑢, 𝑣) in 𝐺 , it reads in 𝑒 , carries out

some computation 𝑓 (𝑒) on 𝑒 , and updates the rank of 𝑣 ;
(b) it then assigns 𝑣 to frontier F′ if the rank of 𝑣 is changed

in (a) and falls in the domain of F′; if such F′ does not
exist in F, it creates one for 𝑣 and adds it to F.

(3) After exploring all vertices in frontier F, A fetches the next
frontier F′′ from F and moves to round 𝑗 + 1 to explore F′′.

(4) The iteration terminates if no frontiers remain in F.

Algorithm A provides the following parameters.
(a) Edge function 𝑓 (𝑒) is the main function to express application-
specific graph computation logic. Note that, whenA visits an edge
𝑒 = (𝑢, 𝑣), 𝑢 must be a vertex in the current frontier. Function 𝑓 (𝑒)
updates vertex properties of 𝑣 by propagating those of 𝑢 according
to the computation logic. For instance, for SSSP, 𝑓 (𝑒) may update
property ans(𝑣), the distance of 𝑣 from the source vertex, by setting
it tomin(ans(𝑢)+𝑤 (𝑒), ans(𝑣)), where𝑤 (𝑒) is the weight of edge 𝑒 .
(b) Rank rank(𝑣) is a reserved runtime property for each vertex in
𝐺 . For each 𝑣 of𝐺 , rank(𝑣) is a real number. Its definition specifies
how rank(𝑣) is updated when A visits 𝑣 via some edge 𝑒 = (𝑢, 𝑣).
Common rank definition includes the number of rounds (#round),
vertex ID (vid), or query answers (e.g., ans).
(c) Frontier width 𝛿 . Vertices are grouped into frontiers according to
their ranks such that each frontier F covers vertices with ranks that
fall into a range called the domain of F. We consider equal-width
domains for frontiers in this work and denote by 𝛿 the width of a
frontier: a frontier Fwith index 𝑟 (𝑟 ∈ N) has domain [𝑟 ·𝛿, (𝑟 +1) ·𝛿).
Hence, in step (2b), a vertex 𝑣 with rank(𝑣) is assigned to frontier
F with index 𝑟 if rank(𝑣)/𝛿 ∈ [𝑟, 𝑟 + 1).
(d) Structure F. Note that there may be multiple unexplored fron-
tiers during traversing. To this end, A organizes them in an appro-
priate structure F, e.g., a heap or a list. In each round, F pops out
the “top” frontier for A to explore. For instance, when F is a list,
frontiers are organized and explored in an FIFO (first-in-first-out)
order according to when they are generated and put in F by A.

Initially, F is empty; when A assigns a newly visited vertex 𝑣 to
frontiers in F and no frontier in F has index ⌊rank(𝑣)/𝛿⌋, a new fron-
tier F is then created for 𝑣 with index ⌊rank(𝑣)/𝛿⌋ and is added to F.

Intuitively, (a) expresses graph computation logic from the view
of an edge (blue in Fig. 1), while (b), (c) and (d) together capture and

Table 1: Graph computations in frontier-ranking model

Traversals 𝑓 (𝑒 )1 rank(𝑣) 𝛿 F
BFS bfs #round: # of rounds in which 𝑣 is visited. 1 list
Reachability bfs vid: ID of vertex 𝑣 ∈ 𝑉 in data graph𝐺 . 1 list
Bellman-Ford distance #round: # of rounds in which 𝑣 is visited. 1 list
Dijkstra distance vid: ID of vertex 𝑣 ∈ 𝑉 in data graph𝐺 . 1 heap

Δ-stepping distance
ans: tentative distance to the source;
ans(𝑣) = min(ans(𝑢 ) + 𝑤 (𝑢, 𝑣), ans(𝑣) ) . Δ heap

PPR pagerank #round: # of rounds in which 𝑣 is visited. 1 list
SpMV spmv #round: # of rounds in which 𝑣 is visited. 1 list
1 see detailed implementations of 𝑓 (𝑒 ) in Section 4.1 and Section 5

normalize the traversal logic by “ranking” vertices into frontiers ac-
cording to their ranks (black in Fig. 1). This has two immediate bene-
fits: (i) it expresses a larger class of algorithms than existing models
(Table 1 shows some example algorithms; see more in Section 3.3);
and (ii) traversal logic is encoded as numeric operations on rank in-
stead of imperative instructions, independent of specific algorithms.
Multi-instance frontier-ranking. We next show how the model
captures one-off style MIP algorithms, referred to as multi-instance
frontier-ranking algorithms. Similar to the single instance case,
a multi-instance frontier-ranking algorithm A𝑀 traverses 𝐺 in
rounds such that in each round a frontier is explored and new fron-
tiers are generated for future rounds. However, multiple instances
may be visiting the same vertices in a frontier simultaneously, which
provides opportunities for computation sharing.

Consider a set 𝑆 of 𝑘 sources 𝑠1, . . . , 𝑠𝑘 of 𝐺 . To compute the
answers to each 𝑠𝑖 , A𝑀 extends the previous special case of single-
instance frontier-ranking algorithms A as follows:
(1) The rank of each vertex 𝑢, i.e., rank(𝑢), is populated to 𝑘 ranks
such that rank(𝑢, 𝑠𝑖 ) is the rank of𝑢 for source 𝑠𝑖 , for each 𝑖 ∈ [1, 𝑘];
similarly for other vertex properties.
(2) Each F maintains, for each vertex 𝑢 in F, all sources that are
currently visiting 𝑢 when F is being explored. This is done via a
structure track: track(𝑢) is a boolean array of length 𝑘 such that
track(𝑢, 𝑠𝑖 ) is True if and only if source 𝑠𝑖 is visiting 𝑢.

More specifically, as shown in Fig. 1(b), A𝑀 traverses 𝐺 in
rounds, similar toA. Initially, F consists of frontiers created for the
sources according to their ranks. A𝑀 starts the traversal with the
top frontier of F, similar to A, but differs in steps (2a) and (2b):

(2a) for each edge 𝑒 = (𝑢, 𝑣) in 𝐺 , it carries out computation 𝑓 (𝑒)
on 𝑒 for all sources 𝑠𝑖 that are currently visiting 𝑣 via 𝑒 , i.e.,
track(𝑢, 𝑠𝑖 ) = True, and updates rank(𝑣, 𝑠𝑖 );

(2b) A𝑀 then assigns 𝑣 , for each source 𝑠𝑖 , to some frontier F′
according to rank(𝑣, 𝑠𝑖 ) if it is changed in step (2a): if there
exists such F′ in Fwhose domain covers rank(𝑣, 𝑠𝑖 ), it adds 𝑣 to
F′ and sets track(𝑣, 𝑠𝑖 ) for F′; otherwise it creates F′ with 𝑣 for
F, with track(𝑣, 𝑠𝑖 ) = True and track(𝑣, 𝑠 𝑗 ) = False for all 𝑗 ≠ 𝑖 .

Sharing. Intuitively,A𝑀 groups traversals at vertex 𝑣 frommultiple
sources 𝑠𝑖 as long as their ranks rank(𝑣, 𝑠𝑖 ) fall in the domain of
the same frontier F′ (step(2b)). In the subsequent rounds, whenever
A𝑀 explores vertex 𝑣 in F′, it groups edge accesses to 𝑒 = (𝑣,𝑤) for
the sources 𝑠𝑖 that visit 𝑣 in the same round, i.e., track(𝑣, 𝑠𝑖 ) = True
(step (2a)). At this point the traversals from the sources are aligned
and the computations for the sources can be therefore shared.
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Figure 2: Classic vs. new reachability algorithm: Figures (c) and
(d) depict the traversal traces of MS-BFS and MITra-RCH, respectively, via
(i) F, in which the “top” frontier F being explored in the round is underlined,
(ii) vertices with their track in F (e.g., 𝑣4 : (1, 1, 0) means track(𝑣4, 𝑠0/𝑠1 ) =
True and track(𝑣4, 𝑠2 ) = False), and (iii) edges accessed when exploring F.

As shown in Fig. 1(b), after exploring 𝑢1 in F𝑖 in round 𝑗 , A𝑀

assigns 𝑣ℎ to (i) F𝑛 for both sources 𝑠1 and 𝑠2 since rank(𝑣ℎ, 𝑠1) and
rank(𝑣ℎ, 𝑠2) are in [𝑛 ·𝛿, (𝑛 +1) ·𝛿), and (ii) F0 for 𝑠𝑘 since rank(𝑣ℎ,
𝑠𝑘 ) ∈ [0, 𝛿). WhenA𝑀 fetches F𝑛 and explores 𝑣ℎ of F𝑛 in round𝑚,
the traversals and computations for 𝑠1 and 𝑠2 are then shared at 𝑣ℎ .
Example 1: BFS is commonly used for reachability computation on
IP and road networks [18, 45]. It traverses graphs in rounds, starting
from the source, and explores all vertices at the present depth prior
to moving on to the next depth level. It can be acquired in A with
specification in Table 1 for BFS (row 1), i.e., by setting #round as
rank, F to list and 𝛿 to 1. With the same frontier specification, multi-
instance BFS, denoted by MITra-BFS, can be captured by A𝑀 by
populating vertex properties (e.g., rank) of A to multiple sources.

As an example, consider 𝐺 in Fig. 2(a) and three sources 𝑠0, 𝑠1
and 𝑠2 (i.e., 𝑣0, 𝑣1 and 𝑣3) in Fig. 2(b). The trace of MITra-BFS for
𝑣0, 𝑣1 and 𝑣3, in the language of A𝑀 , is depicted in Fig. 2(c).

Initially, F is empty and the ranks for all vertices and all sources
are undefined except rank(𝑣0, 𝑠0), rank(𝑣1, 𝑠1) and rank(𝑣3, 𝑠2)
are set to #round, i.e., 0.MITra-BFS creates frontier F0 for 𝑣0, 𝑣1 and
𝑣3 with frontier domain [0, 1) covering their ranks. It sets track(𝑣0,
𝑠0), track(𝑣1, 𝑠1) and track(𝑣3, 𝑠2) to True for F0, and adds F0 to F.

In the first round, as shown in row 1 in Fig. 2(c), it pops out the
“top” (only) frontier from F, i.e., 𝐹0 for exploration: it first accesses
edge (𝑣0, 𝑣1) of 𝑣0 with only track(𝑣0, 𝑠0) = True; hence, it marks
𝑣1 as discovered for source 𝑠0 (i.e., BFS edge function in Table 1),
and updates rank(𝑣1, 𝑠0) to #round, i.e., 1 (step (2a) of A𝑀 ); since
rank(𝑣1, 𝑠0) is changed, it assigns 𝑣1 for source 𝑠0 to new frontier
according to the updated rank(𝑣1, 𝑠0), which is F1 that does not
exist in F; hence, it creates frontier F1 for 𝑣1 and adds F1 to F (step
(2b) of A𝑀 ). Similarly, it accesses (𝑣0, 𝑣2) for source 𝑠0, (𝑣1, 𝑣3) for
𝑠1 and (𝑣3, 𝑣4) for 𝑠2;A𝑀 adds 𝑣2, 𝑣3 and 𝑣4 to F1 that already exists
in F. In round 2, as shown in row 2 of Fig. 2(c), F pops out the next
“top” (only) frontier 𝐹1 from F for exploration. A𝑀 continues until
no frontiers remain in F (row 4 in Fig. 2(c)).

In total, MITra-BFS accesses 10 edges for all three queries. It
shares the access to edge (𝑣4, 𝑣5) for both 𝑠0 and 𝑠1 in round 3 as
both track(𝑣4, 𝑠0) and track(𝑣4, 𝑠1) are True in F2. 

Properties. The frontier-ranking model has distinct properties.
(1) Abstraction. It normalizes traversal logic via vertex ranks, inde-
pendent of computation logic cast in edge functions. This makes it
possible to develop a framework approach to composing MIP algo-
rithms, by abstracting multi-instance traversing away from users.

(2) Effectiveness. By “ranking” vertices to frontiers via numeric op-
erations, it groups traversals frommultiple sources according to ver-
tex ranks, enabling shared cost of traversal and edge function com-
putation across instances. By picking different vertex ranks, one can
express existing sophisticated one-off MIP algorithms or even com-
pose new MIP algorithms with provably higher sharing capabilities.
(3) Expressiveness. Frontier-ranking model is more expressive than
existing graph computation models, even for single-instance algo-
rithms. This allows us to develop MIP algorithms for a wider range
of queries and algorithms than existing frameworks.

Below we formally prove and discuss properties (2) and (3) in
Sections 3.2 and 3.3, respectively. We will delve into (1) in Section 4.

3.2 Effectiveness
We demonstrate the effectiveness of the frontier-ranking model for
expressing existing one-off MIP algorithms and moreover, compos-
ing new MIP algorithms with provably higher degree of sharing, by
simply playing with vertex ranks. We also show the link between
vertex ranks and the capability of sharing across instances.
Expressing one-off algorithms. The frontier-ranking model can
express state-of-the-art one-offMIP algorithms. Indeed, one can ver-
ify thatMITra-BFS of Example 1, exactly capturesMS-BFS [48], the
state-of-the-art multi-instance BFS algorithm. Similar to MS-BFS,
one can also cast the one-offMS-Dijkstra [57] as a frontier-ranking
algorithm with vid as vertex ranks, 𝛿 = 1, F as a heap, and the
typical edge relaxation operation of SSSP algorithms [16] as the
edge function (row 4 of Table 1; see more in Section 4).
Deducing new algorithms. Frontier-ranking model abstracts tra-
versal logic by means of vertex ranks, making it possible to provide
an unified intuitive interface for us to compose new MIP algo-
rithms by simply playing with vertex ranks. As an example, we
show how to derive a new MIP algorithm for reachability queries
from MS-BFS, with provably higher level of sharing than MS-BFS.
Multi-instance reachability. As discussed above, MS-BFS [48], the
state-of-the-art MIP algorithm and the natural choice for multi-
instance reachability queries [45], can be modeled inA𝑀 asMITra-
BFS. By simply changing its vertex ranks from #round to vid and
retaining everything else (row 2 of Table 1), we derive a new algo-
rithm from MS-BFS, denoted by MITra-RCH, that is even more ef-
fective thanMS-BFS for reachability due to higher level of sharing.

Example 2: Continue with Example 1. We show that by simply
changing vertex ranks from #round to vid,MITra-RCH is able to
reduce the cost ofMS-BFS for sources 𝑠0 (𝑣0), 𝑠1 (𝑣1), 𝑠2 (𝑣3) over𝐺
in Fig. 2. The traversal trace ofMITra-RCH is shown in Fig. 2(d).

More specifically, F is initially empty and the ranks for all vertices
and all sources are undefined except that rank(𝑣0, 𝑠0) is the vid of
𝑣0, i.e., 0, rank(𝑣1, 𝑠1) is 1, and rank(𝑣3, 𝑠2) is 3 (assume w.l.o.g. that
the vid of 𝑣𝑖 is 𝑖). It then creates three frontiers F0 = {𝑣0}, F1 = {𝑣1}
and F3 = {𝑣3} such that the domain of F𝑖 (𝑖 ∈ {0, 1, 3}) covers the
rank of 𝑣𝑖 . It sets track(𝑣0, 𝑠0), track(𝑣1, 𝑠1) and track(𝑣3, 𝑠2) to True.
It then adds the three frontiers to F as a list F0 → F1 → F3.

In round 1, as shown in row 1 in Fig. 2 (d),MITra-RCH pops out
the “top” frontier from F, i.e., 𝐹0 for exploration. It first accesses
edge (𝑣0, 𝑣1) of 𝑣0, mark 𝑣1 as discovered for source 𝑠0 (i.e., BFS edge



function), and updates the rank of 𝑣1 for source 𝑠0, i.e., rank(𝑣1, 𝑠0),
from undefined to 1 since only track(𝑣0, 𝑠0) is True. It then assigns
𝑣1 for source 𝑠0 to new frontier according to the updated rank(𝑣1, 𝑠0),
which is F1 that already exists in F; hence, it simply sets track(𝑣1, 𝑠0)
to True for F1. Similarly, it traverses (𝑣0, 𝑣2), assigns 𝑣2 for source 𝑠0
to a new frontier F2, which does not exist in F. So it creates F2 for
𝑣2 and appends F2 to F, which is now F1 → F3 → F2.

Along the same lines, it pops and explores F1 from F in round 2
(row 2 in Fig. 2 (d)). This continues until F becomes empty (row 6).

In total,MITra-RCH accesses 6 edges, in contrast to 10 byMS-BFS.
Indeed, MITra-RCH not only exploits sharing across sources for
vertices at the same depth level of MS-BFS, it also “aligns” and
shares computations across different depth levels of MS-BFS. This
gives MITra-RCH more “shared accesses” to edges for the sources,
as reflected by the number of 1′𝑠 for vertices in the frontiers of
MITra-RCH, i.e., the F column of Fig. 2(d). For instance, (𝑣3, 𝑣4) is
accessed only once for all three sources by MITra-RCH in round 3
as the track of 𝑣3 for all three sources are True for F3, while it is ac-
cessed three times byMS-BFS, one for source 𝑠2 in round 1, one for
source 𝑠1 in round 2, and one for source 𝑠0 in round 3 (Fig. 2(c)). 

The higher level of sharing ofMITra-RCH overMS-BFS is not
a coincidence: MITra-RCH enables better sharing for each and ev-
ery input. Denote by cost𝐴 (𝐺, 𝑆) the number edge accesses when
answering all sources in 𝑆 over 𝐺 by algorithm 𝐴. Then we have:
Theorem 1: For every graph 𝐺 and every set 𝑆 of source vertices
for reachability, costMITra-RCH (𝐺, 𝑆) ≤ costMS−BFS (𝐺, 𝑆). 

From ranking to sharing. Theorem 1 is not a coincidence. Indeed,
it is the implication of a connection between vertex ranks and the
level of sharing of multi-instance frontier-ranking algorithms.

In general, vertex ranks that are more “permissive” give us more
sharing. Consider two vertex ranks, namely, rank1 () and rank2 ().
We say that rank1 is more sharing-permissive if for any vertex 𝑢 of
𝐺 , any sources 𝑠 and 𝑠′, the probability of rank1 (𝑢, 𝑠) = rank1 (𝑢, 𝑠′)
is no lower than that of rank2 (𝑢, 𝑠) = rank2 (𝑢, 𝑠′). That is, rank1 is
more permissive than rank2 if vertices are more likely to be ranked
into the same frontier for the same source with rank1.

With the same edge function and frontier specification, i.e., F and
𝛿 , a frontier-ranking algorithms with vertex ranks that are more
sharing-permissive will have a higher degree of sharing across
instances. This has the following immediate implications.
(1) vid > #round. Algorithms with vid as ranks allow more sharing
than those with #round as rank(𝑢, 𝑠) = rank(𝑢, 𝑠′) in all cases, i.e.,
vid permits the highest level of sharing among all ranks. This also
justifies the “instance-better” result ofMITra-RCH in Theorem 1 .
(2) #round ⪆ ans. Algorithms with #round as ranks usually have
better sharing than those use ans, since vertices𝑢 visited by sources
𝑠 and 𝑠′ in the same round will be assigned with the same #round,
i.e., rank(𝑢, 𝑠) = rank(𝑢, 𝑠′), irrelevant of edge functions. In con-
trast, with ans the ranks of 𝑢 for 𝑠 and 𝑠′ depend on edge functions
and may not converge although they both visit 𝑢 in the same round.
(3) F and 𝛿 . Frontier parameters F and 𝛿 are also relevant. Indeed,
if the domain of ans is small and 𝛿 is large, ans can have more
sharing than #round since 𝑢 may be ranked to the same frontier
for 𝑠 and 𝑠′ by ans even it is visited by them in different rounds.

3.3 Expressive Power
We next formally examine the expressiveness of frontier-ranking
algorithms, by comparing with computation models of popular gen-
eral-purpose graph frameworks. Since these frameworks and mod-
els cannot express multi-instance algorithms, we focus on single-
instance graph traversal algorithms only, in favor of these models.
Models. We consider two classic models: vertex-centric underlying
distributed graph frameworks, e.g., Pregel [32] and edge-traversal
model adopted by in-memory parallel frameworks, e.g., Ligra [45].
(a) Vertex-centric model. Underlying most distributed graph frame-
works [1, 19, 23, 30, 32, 49, 55] is the vertex-centric model. A vertex-
centric algorithm runs in supersteps. In each superstep, every vertex
of𝐺 invokes the same user program called vertex function in paral-
lel; the output of an invocation at a vertex 𝑣 of graph𝐺 is a message
that is sent to all neighbors of 𝑣 , as the input of their next superstep.
(b) Edge-traversal model. The edge-traversal model serves as the
abstraction for shared memory parallel graph frameworks [45, 47].
It traverses 𝐺 by edges and uses an edge function for computation
logic. Different from frontier-ranking algorithms, it adopts a BFS-
like traversal logic: when exploring a frontier, only a single frontier
is generated for the immediate next round. When exploring a vertex
𝑢, finding neighbors of 𝑢 is parallelized in frameworks of the model.
Simulation Theorem. Following [50], we next compare the expres-
sive power of all three models via model simulation. Specifically:
• We say that modelM can optimally simulatemodelM′ if there

exists a compilation algorithm that transforms any algorithm
𝑃 ′ ofM′ with cost 𝐶 to algorithm 𝑃 ofM with cost 𝑂 (𝐶).

• A modelM can practically simulatemodelM′ if there exists a
compilation algorithm that transforms any algorithm 𝑃 ′ ofM′
with cost 𝐶 to algorithm 𝑃 ofM with cost 𝑂 (𝐶) +𝑂 (log |𝑉 |).

Note that, ifM optimally simulatesM′, it also practically simu-
latesM′, but not vice versa. Intuitively, ifM optimally simulates
M′ butM′ cannot simulateM, thenM is strictly more expressive
thanM′. We next specify the cost of algorithms for the models.

We measure the cost of algorithms of all three models as the total
number of edge accesses. To favor the vertex-centric model, we
assume that its communication is completely free andwe only count
the number of active edge accesses as the cost of a vertex-centric
algorithm, where an access to edge (𝑢, 𝑣) is active in superstep 𝑘 + 1
only if the output of the vertex function at𝑢 changes in superstep 𝑘 .

The frontier-rankingmodel ismore expressive than vertex-centric
and edge-traversal, even for single-instance graph traversals only.
Theorem 2: (1) Vertex-centric and edge-traversal single-instance al-
gorithms can be optimally simulated by frontier-ranking algorithms.

(2) There exists single-instance frontier-ranking algorithm that cannot
be practically simulated by vertex-centric or edge-traversal. 

Theorem 2 verifies that frontier-ranking algorithms have more
expressive power for single-instance algorithms. In addition to
this, since frontier-ranking model can express one-off style MIP
algorithms that are beyond the reach of vertex-centric and edge-
traversal models, taken together we have that the frontier-ranking
model has greater expressive power than the traditional models.



ALGORITHM 1: MITra-RCH/MITra-BFS (multi-instance Reachbility/BFS)
1 #define F list; #define 𝛿 1; #define rank vid ; // BFS: #define rank #round
2 initialize vertex properties <bool> ans ; // ans[𝑣 ] [𝑠 ] : whether 𝑣 is reachable from 𝑠

........................................................................................................................
3 Function EdgeFunc(𝑢, 𝑣) /* for both Reachability and BFS */
4 ans[𝑣 ] ← mitra_Or(track[𝑢 ], ans[𝑢 ], ans[𝑣 ] ) ;

4 THE MITRA FRAMEWORK
We are now ready to present the MITra framework. We start with
the programming model ofMITra (Section 4.1). We then discuss its
internal workflow (Section 4.2) and implementation (Section 4.3).

4.1 Programming with MITra
Programming model. The programming interface of MITra con-
sists of a preamble that configures frontiers and an edge function.
Preamble.MITra allows users to declare (a) configurations for vertex
ranks, frontier width 𝛿 and frontier structure F, which together
instructMITra the traversal logic that user wants to perform; and
(b) any number of runtime vertex properties for the edge function.

Among them, a mandatory vertex property is ans that records
answers of each vertex, e.g., distance to the sources for SSSP. Similar
to rank, each property X of a vertex 𝑢, denoted by X[𝑢], is an array
of values such that X[𝑢] [𝑖] is the X-property of 𝑢 for source 𝑠𝑖 .
Edge function. The main interface of MITra is EdgeFunc, which
allows users to specify computation logic 𝑓 (𝑒) on edges 𝑒 = (𝑢, 𝑣)
by instructing how vertex properties are propagated from 𝑢 to 𝑣 .

The key to EdgeFunc is to express MIP computations over 𝑒 =

(𝑢, 𝑣) for multiple source vertices that visit 𝑣 from𝑢 in the same step.
To assist this,MITra automatically maintains track, a structure that
records those sources that are traversing 𝑒 (Section 3.1), and uses it
to apply computation logic of EdgeFunc to only those sources that
are visiting 𝑣 from 𝑢, with a single invocation to EdgeFunc on 𝑒 .

As shown in Table 1, by specifying EdgeFunc, vertex ranks, F and
𝛿 ,MITra can express various multi-instance graph computations.
MITra programs. We show how to write MIP programs viaMITra.
Graph search. Using MITra, the user programs for multi-instance
Reachability and BFS, i.e.,MITra-RCH andMITra-BFS as discussed
in Section 3, are exactly the same except their vertex ranks.

More specifically, as shown in Algorithm 1, the preamble of the
program specifies the configuration of frontier and vertex ranks
(line 1), and declares property ans such that ans[𝑣] [𝑖] = True
indicates that 𝑣 is reachable from source 𝑠𝑖 (line 2).

Both algorithms use a one-line edge function (line 4) that nat-
urally extends single-source BFS with mitra_Or, one of the dedi-
cated operators from MITra for deriving edge functions from tradi-
tional single-source algorithms: specifically, for each source 𝑠𝑖 , it
updates ans[𝑣] [𝑖] with ans[𝑢] [𝑖] ∨ ans[𝑣] [𝑖] if track[𝑢] [𝑖] is True.
Shortest path. Similarly, multi-instance shortest path (SSSP) algo-
rithms, e.g., Bellman-Ford, Dijkstra and Δ-stepping, also share the
same EdgeFunc when written with MITra, despite their different
traversal logic. As shown in Algorithm 2, they only differ in the pre-
amble for vertex ranks and frontier setup (recall rows 3-5 in Table 1).

Indeed, their edge function is almost the same as that of e.g., a
text-book single-instance SSSP algorithm (lines 4-5 of Algorithm 2),

ALGORITHM 2: MITra-BellF/MITra-Dijk/MITra-DS (multi-instance SSSP)
1 #define F list; #define 𝛿 1; #define rank #round ; // frontier and vertex rank

for Bellman-Ford; pick corresponding configurations for Dijkstra and Δ-stepping from Table 1
2 initialize vertex properties <int> ans ; // ans[𝑣 ] [𝑠 ]: the distance from 𝑠 to 𝑣
........................................................................................................................
3 Function EdgeFunc(𝑢, 𝑣) /* The distance function (𝑓 (𝑒 )) in Table 1 */
4 temp← mitra_Add(track[𝑢 ], ans[𝑢 ], 𝑤 (𝑢, 𝑣) ) ;
5 ans[𝑣 ] ← mitra_Min(track[𝑢 ], ans[𝑣 ], temp) ;

carrying out “edge relaxation” [16] that relaxes the tentative dis-
tances ans[𝑣] of 𝑣 by checking whether ans[𝑣] can be reduced by
ans[𝑢]+𝑤 (𝑢, 𝑣). The only difference is that we replace arithmetic
operations in the relaxation, namely, Add and Min, with theirMITra
versions mitra_Add and mitra_Min, respectively. Specifically, for
each source 𝑠𝑖 , mitra_Add updates temp[𝑖] with ans[𝑢] [𝑖] +𝑤 (𝑢,
𝑒) if track[𝑢] [𝑖] = True (line 4); similarly for mitra_Min (line 5).
Features. The MITra framework has the following properties.
(1) Edge-centric programming. MITra advocates an edge-centric
programming interface: users only need to specify the computation
logic via edge function from the perspective of an edge, independent
of the traversal logic that is handled by the preamble via declared
vertex ranks and frontier specification. This makesMITra programs
for algorithms with distinct traversal logics almost identical, e.g.,
three SSSP algorithms, or BFS vs. Reachability as shown above.
(2) Ease-of-use. In addition, it provides the MITra variant of logical
and arithmetic operators, e.g., mitra_Or and mitra_Add, that help
users re-use edge functions from classic single-instance algorithms
and populate them for EdgeFunc of multi-instance computations
by simply replacing such operations with theirMITra versions.
(3) Model obliviousness. Users configure traversal logic by specifying
vertex ranks and frontiers in a preamble, and are oblivious to the
housekeeping of e.g., computing vertex ranks, ranking vertices to
frontiers and maintaining track for theMITra operators.

These makeMITra a convenient tool for users to implement MIP
algorithms. For instance, it takes about 20 lines of code for both
MITra BFS and Dijkstra (full program), as opposed to 550 and 200
lines (core function only) forMS-BFS [48] andMS-Dijkstra [57], re-
spectively, while they have comparable performance (see Section 6).

4.2 From MITra programs to Frontier-Ranking
We next show howMITra synthesizes and executes a multi-instance
frontier-ranking algorithm from aMITra program, e.g.,Algorithm 1.

As shown in Algorithm 3, MITra automatically generates fron-
tiers according to the preamble, and carries out multi-instance
traversing by following the frontier-rankingmodelA𝑀 (Section 3.1),
without user interference or algorithm-dependent knowledge.

Specifically, MITra first registers frontier and vertex ranks de-
clared in the preamble (lines 1-3), and initializes vertex properties
(line 4); in particular, it sets the rank of all vertices to undefined
except the sources of which the rank is determined by the rank
definition.MITra initializes F from sources according to their ranks
(line 5). It then iteratively explores frontiers in F via procedure
MTraverse, by following step (2) of modelA𝑀 (lines 6-8). Finally, it
collects and returns ans[𝑢] for all sources from all vertices𝑢 (line 9).

MTraverse visits each neighbor 𝑣 of each vertex 𝑢 in the current
frontier F (lines 11-15), applies EdgeFunc to (𝑢, 𝑣) (line 14), and pops



ALGORITHM 3: FullMITra algorithm (with internal functions)
Input: Graph𝐺 (𝑉 , 𝐸 ) , sources 𝑠1 , . . . , 𝑠𝑘 .
Output: for each 𝑣 ∈ 𝑉 and 𝑖 ∈ [1, 𝑘 ], the answer of 𝑣 for 𝑠𝑖 .

1 #define F frontier_structure; 𝛿 frontier_width;
2 #define <type> rank; <type> ans;
3 #define<type> X1 ; . . . ; <type> X𝑝 ; // declare vertex properties
4 initialize vertex properties;
5 initialize F from 𝑠1 , . . . , 𝑠𝑘 ;
6 F← F.pop( ) ; // frontier for round 1
7 while F ≠ nil do
8 F← MTraverse(F, EdgeFunc) ;
9 return ans of all vertices;

10 Procedure MTraverse(F, EdgeFunc)
11 foreach 𝑢 ∈ F do
12 foreach edge (𝑢, 𝑣) of 𝑢 in𝐺 do
13 pre← ans[𝑣 ];
14 EdgeFunc(𝑢, 𝑣) ; // invoke user input edge function

15 UpdateF(𝑣, pre); // assign 𝑣 to future frontiers

16 return F.pop( ) ; // pop a frontier for the next round; nil if F is empty

17 Procedure UpdateF(𝑣, pre_ans)
18 𝜔 ← mitra_Neq(pre_ans, ans[𝑣 ] ) ;
19 oFids← mitra_Div(𝜔, rank[𝑣 ], 𝛿 ) ;
20 updaterank(𝜔, rank[𝑣 ] ) ; // built-in rank updates inMITra library
21 nFids← mitra_Div(𝜔, rank[𝑣 ], 𝛿 ) ;
22 foreach 𝑖 ∈ [1, 𝑘 ] and 𝜔 [𝑖 ] = 1 do
23 F[oFids[𝑖 ] ] .track[𝑣 ] [𝑖 ] ← 0;
24 if F[nFids[𝑖 ] ] = nil then // F has no frontier F with F.index = nFids[𝑖 ]
25 create a new frontier Fn ; Fn .index← nFids[𝑖 ];
26 F.addFrontier(Fn ) ; // Fn can now be referenced as F[nFids[𝑖 ] ]
27 F[nFids[𝑖 ] ] .track[𝑣 ] [𝑖 ] ← 1;

out a new frontier from F for the next iteration (line 16). The crux
is to (1) update rank[𝑣] and (2) track progress of all the sources.
(1) Specifically, it updates rank[𝑣] [𝑖] after visiting (𝑢, 𝑣) only if
EdgeFunc changes ans[𝑣] [𝑖]; this avoids unnecessarily putting 𝑣
to future frontiers for 𝑠𝑖 . It does this by comparing the values of
ans[𝑣] before and after the invocation of EdgeFunc, via MITra
operator mitra_Neq (line 18), and updates rank[𝑣] [𝑖] for sources
𝑠𝑖 of which ans[𝑣] [𝑖] are changed (line 20). It also decides frontiers
to which 𝑣 needs to be assigned for 𝑠𝑖 , via mitra_Div (line 21).
(2) It keeps track of traversal by maintaining track[𝑣] [𝑖] for each
source 𝑠𝑖 when 𝑣 is assigned to frontiers in F for future iterations
(lines 22-27). When it assigns 𝑣 to a new frontier F𝑛 for 𝑠𝑖 , it first
removes 𝑣 from the existing frontier for 𝑠𝑖 by setting its track[𝑣] [𝑖]
to 0 (line 23). It then adds 𝑣 to F𝑛 by setting track[𝑣] [𝑖] to 1 for F𝑛
(lines 27); if such F𝑛 is not yet in F, it creates one first (lines 25-26).

Example 3: Recall the MITra program for Reachability in Algo-
rithm 1. The full algorithm thatMITra synthesizes fromAlgorithm 1
is exactly Algorithm 3 “instantiated” with (a) lines 1-4 adopted from
the preamble of Algorithm 1 and (b) EdgeFunc (line 14) from that of
Algorithm 1. One can readily verify that its trace over𝐺 of Fig. 2(a)
for sources in Fig. 2(b) is exactly theMITra-RCH trace of Fig. 2(d)
(recall Example 2). Similarly, the synthesized algorithm from Algo-
rithm 1 with #round as ranks is exactlyMITra-BFS (MS-BFS) and
would give us the trace in Fig. 2(c). Along the same lines, one can
get full frontier-ranking algorithms for Dijkstra, BellmanFord and
Δ-stepping by instantiating Algorithm 3 with Algorithm 2. 

4.3 Implementation of MITra

Overview. MITra consists of two major components:
(1) User interface provides (a) a configuration module that allows
users to specify frontier parameters and (b) an application module
with which one can declare vertex properties and plug in an edge
function to express the application-specific computation logic.
(2)MITra library. At its core is theMITra library, which assists users
to adopt edge functions from classic single-instance algorithms and
synthesize multi-instance frontier-ranking algorithms.
Implementation. We next discuss key details of theMITra library.
Frontiers. For sparse graphs, a frontier F is implemented as a map,
where keys are vertices 𝑣 in F and the mapped value of 𝑣 is track[𝑣]
for F, encoded as a bit array of size 𝑘 (the number of sources). For
dense graphs,MITra uses arrays to represent frontiers for higher
access efficiency. Specifically, F is a 2-dimensional bit array of size
|𝑉 | × 𝑘 such that F[𝑣] [𝑖] is True if 𝑣 ∈ F and track[𝑣] [𝑖] is True.

Unlike track that is local to frontiers, all vertex properties, e.g.,
rank and ans, are global and hence implemented as arrays.
MITra operators. The library providesMITra variants of common
logical and arithmetic operators, e.g., mitra_Or in Algorithms 1.
A MITra operator mitra_OP(track[𝑢], X[𝑢], X′ [𝑣]) selectively ap-
plies operatorOP (e.g., Add) to vertex properties X[𝑢] and X′ [𝑣] only
for sources 𝑠𝑖 if track[𝑢] [𝑖] = True.MITra operators allow users to
simplify theirMITra programs by conveniently adopting EdgeFunc
from traditional single-instance algorithms (e.g., Algorithm 1 and 2).
Extension.MITra implements two optional functions that give even
more flexibility in composing MIP algorithms. (1) One may option-
ally specify a vertex function 𝑓𝑣 (𝑢) that enablesMITra to express tra-
versals that, e.g., only explore a frontier vertex 𝑢 when certain con-
ditions are met. (2)MITra also allows postround, a post-hoc function
that operates at the end of each round. This can be helpful when the
computation logic (e.g., PageRank) requires to aggregate over prop-
erties of vertices visited in a round before moving on to the next.
Optimization. The design ofMITra allows effective optimizations.
SIMD.MITra operators are optimized with SIMD, via e.g., Intel in-
trinsics [2] that support vectorized mask operations, by treating
track[𝑢] as mask, e.g., mitra_Add(track[𝑢], ans[𝑢],𝑤 (𝑢, 𝑣)) is im-
plemented as _mm256_mask_add_epi32(inf,track[u],ans[u],
_mm256_set1_epi32(w(u,v))). This ensures that shared traver-
sal (EdgeFunc invocation) indeed leads to shared computation.
Tracking-free traversal. Recall thatMITra tracks the traversal progress
of all sources via the structure track, and uses it inMITra operators
to update vertex properties only for the correct set of sources.

However, there exist algorithms for which such explicit progress
tracking is not necessary. For them, MITra implements tracking-
free traversal (TrackFree), an optimization that enables us to bypass
references to track and propagate vertex properties of 𝑢 to 𝑣 for
all sources. Specifically, this is realized in MITra via the MITra
operators, which, if TrackFree is enabled, are implemented via
standard SIMD operation without mask, e.g., mitra_Add(track[𝑢],
ans[𝑢],𝑤 (𝑢, 𝑣)) would simply be _mm256_add_epi32(ans[u],

_mm256_set1_epi32(w(u,v))). This allows sources that are not
visiting 𝑢 to take “free rides” of those are, without extra cost.
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ans[vj ] = [9, 4, 8, . . . , 6]
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(b) Edge Function (SSSP)

ans[vi] = [6, 2, 4, . . . , 3]
track[vi] = (0, 1, 0, . . . , 0)

ans[vj ] = [9, 7, 8, . . . , 6]

sk−1 temp = mitra Add(track[vi], ans[vi], 2)

ans[vj ] = mitra Min(track[vi], ans[vj ], temp)

Figure 3: TrackFree Optimization

Example 4: Consider a weighted graph 𝐺 in Fig. 3(a), which has
(1) a connected component 𝐶1 with vertices 𝑠0, 𝑠1, . . ., 𝑠𝑘−1, 𝑣0, 𝑣1,
. . ., 𝑣𝑖−1, (2) connected component 𝐶2 with vertices 𝑣 𝑗+1, 𝑣 𝑗+2, . . .,
𝑣𝑛 , and (3) two vertices 𝑣𝑖 and 𝑣 𝑗 with adjacent edges connecting
𝐶1 and 𝐶2; edge weights are also shown in Fig. 3(a). Consider SSSP
query with 𝑘 source vertices 𝑆 = {𝑠0, 𝑠1, . . ., 𝑠𝑘−1} from 𝐶1. Recall
from Section 4.1 that the ans vertex property stores the tentative
distance of each vertex in 𝐺 from each source in 𝑆 .

Assume in round 𝑟 , a frontier F that contains vertex 𝑣𝑖 is explored.
The track[𝑣𝑖 ] of 𝑣𝑖 in F is shown in Fig. 3(a), indicating that only
source 𝑠1 is visiting 𝑣𝑖 for the current round, i.e., track[𝑣𝑖 ] [1]=True.
Upon visiting edge (𝑣𝑖 , 𝑣 𝑗 ), the edge function for SSSP (i.e., Fig. 3 (b))
is invoked for updating ans[𝑣 𝑗 ] using ans[𝑣𝑖 ] viaMITra operations
masked by track[𝑣𝑖 ]. One can verify that (1) without TrackFree,
ans[𝑣 𝑗 ] is updated to Fig. 3(c), i.e., only ans[𝑣 𝑗 ] [1] is progressed
from 7 to 4 (blue, underlined); In contrast, (2) with TrackFree, all 𝑘
values of ans[𝑣 𝑗 ] are updated as shown in Fig. 3(d). The immediate
effect of TrackFree is that changes of all𝑘 values of ans[𝑣 𝑗 ] are prop-
agated earlier to component 𝐶2, leading to faster termination. 

The benefit is two-fold. (a) Bypassing track eliminates tolls for
maintaining track, yielding reduced overhead. (b) As shown in Ex-
ample 4, by progressing earlier via free riding onMITra operations,
one gets earlier termination and reduced EdgeFunc invocations.

Applying TrackFree changes the traversal logic, and hence may
not apply to all queries. The rule of thumb is that if ans[𝑣] [𝑖]
changes monotonically for each 𝑣 and source 𝑠𝑖 and converges to
the same terminating value, independent of the order of edges on
which EdgeFunc fires, then TrackFree applies to the query and all al-
gorithms for the query. For instance, Reachability and SSSP queries
have the property and benefit from TrackFree, while BFS cannot.

5 APPLICATIONS
We have seen how to program withMITra for multi-instance graph
search and shortest path queries (Section 4). Below we further
demonstrate MITra with graph analytical computations.
Sparse matrix-vector multiplication (SpMV). SpMV is a widely
used kernel in graph analytics, e.g., Graph/Recurrent Neural Net-
works [17, 40]. Generalized SpMV iteratively computes 𝑥𝑡+1 = 𝐴𝑥𝑡

=
⨁︁𝑛

𝑖=1𝐴𝑖 ⊗ 𝑥𝑡 , where 𝐴 is the adjacency matrix (transposed) of a
graph𝐺 and𝐴𝑖 is the 𝑖-th row of𝐴; 𝑥𝑡 is a vector of values, each for
a vertex of𝐺 ; 𝑡 is the number of iterations that have been completed;
⊕ and ⊗ are algorithm-specific semiring operators. To reduce nota-
tion, we simply adopt the standard + and× for ⊕ and ⊗, respectively,
which yields the standard matrix-vector multiplication.

It has been a common practice to use graph computation frame-
works for SpMV, by framing it as a graph traversal problem [17,

ALGORITHM 4: MITra-SpMV (multi-instance SpMV withMITra)

1 #define F list; #define 𝛿 1; #define rank #round;
2 initialize properties <int> anscur , ansnext ;
........................................................................................................................
Function EdgeFunc(𝑢, 𝑣) /* The SpMV function (𝑓 (𝑒 )) in Table 1 */

3 temp← mitra_Mul(track[𝑢 ], anscur [𝑢 ], 𝑤 (𝑢, 𝑣) ) ;
4 ansnext [𝑣 ] ← mitra_Add(track[𝑢 ], ansnext [𝑣 ], temp)

5 Function postround
6 foreach 𝑣 ∈ 𝑉 do anscur [𝑣 ] ← mitra_Set(anscur [𝑣 ], 0) ;
7 swap(anscur, ansnext ) ;

27, 42, 47]: if we view 𝑥 as a dummy vertex 𝑣𝑥 that is connected to
vertices for which the corresponding entries in 𝑥 is “non-zero”, then
SpMV reduces to a traversal of𝐺 starting from 𝑣𝑥 . Naturally, multi-
instance SpMV carries out 𝑘 such SpMV iterations 𝐴𝑥1, . . . , 𝐴𝑥𝑘 .

We next show howMITra helps with multi-instance SpMV, by
presentingMITra-SpMV (Algorithm 4). In the preamble, it declares
vertex ranks and configures frontiers according to Table 1 (line 1).
It also registers anscur and ansnext, where anscur is the value of 𝑥
from the last round and ansnest is its value updated by EdgeFunc in
the current round. Initially, anscur is set according to 𝑥 𝑗 ( 𝑗 ∈ [1, 𝑘])
and ansnext is 0 for all vertices and all instances (line 2).

The edge function (lines 3-4) is the standard addition and mul-
tiplication implementation of ⊕ and ⊗, in MITra versions. Upon
visiting 𝑣 through edge (𝑢, 𝑣), it first multiplies anscur [𝑢] by edge
weight𝑤 (𝑢, 𝑣) and stores the value in array temp (line 3), and then
adds temp to ansnext [𝑣] (line 4). In addition, MITra also specifies
the post-hoc function postround (recall Section 4.3) to reset anscur
(lines 6) and switch anscur and ansnext for the next round (line 7).
PageRank. Given𝐺 and source vertex 𝑠 , the Personalized PageRank
(PPR) value of a vertex 𝑣 for 𝑠 , denoted by 𝑃𝑣 , is the probability that
a random walk in 𝐺 from 𝑠 terminates at 𝑣 .

PPR algorithms are based on a recurrence equation [21, 36, 38]:

𝑃𝑡+1 = 𝛼X𝑃𝑡 + (1 − 𝛼) ∗ 𝑒𝑠 ,
where𝛼 is the damping factor,X = 𝐴D−1, whereD is the out-degree
matrix of 𝐺 (a diagonal matrix with the number of out-degree of
each vertex), 𝑃𝑡 is the PPR values at iteration 𝑡 , and 𝑒𝑠 is an identity
vector (𝑒𝑠 [𝑣] is 1 when 𝑣 is 𝑠 and 0 otherwise). Intuitively, the first
term is an SpMV and the second term is a personalization factor.
Hence, PPR is often solved by adopting an SpMV algorithm with
an addition of the personalization factor in each iteration [17, 38].

Multi-instance PPR computes for each vertex 𝑣 in𝐺 , given a set 𝑆
of source vertices, the PPR value of 𝑣 for each 𝑠 ∈ 𝑆 . It can naturally
be handled by adopting MITra-SpMV; we denote it by MITra-PPR.
Remark. Implementing algorithms with MITra does not incur
extra tolls in terms of computation complexity. The overhead of
MITra only comes from operations over rank and track, which
take𝑂 (1) time upon each visit to a vertex by a source. Hence, with
only one source, theMITra algorithms we presented so far have the
same complexity as their traditional counterparts. When there are 𝑘
sources, in the worst case, the sources can be mutually independent
and no computation sharing or complexity reduction is possible.

However, the actual cost of the algorithms varies significantly
w.r.t. degree of sharing. Indeed, when an access to an edge 𝑒 is shared
by two sources 𝑠 and 𝑠′, their traversal cost, e.g., fetching vertices
and edge lists and maintaining frontiers, is completely shared. In



Table 2: Real-life data graphs and synthetic graphs

Graphs #vertices |𝑉 | #edges |𝐸 | degree diameter [5]

dense

Pokec [4] 1,632,803 30,622,564 18.75 11
LiveJournal [3] 4,847,571 68,993,773 14.23 16
Twitter [8] 41,652,230 1,468,365,182 35.25 23
UKDomain [9] 105,153,952 3,301,876,564 31.40 112
rMat [15] 223-227 227-231 16 8-9

sparse

UKTraffic [10] 7,733,822 17,687,718 2.29 4604
DETraffic [10] 11,548,845 26,872,465 2.33 3130
USTraffic [11] 23,947,347 58,333,344 2.44 8315
EUTraffic [10] 50,912,018 108,109,320 2.12 14427
Grid-2d [45] 223-227 225-229 4 2896-11584

theory, the computation cost, i.e., total work of EdgeFunc over 𝑒 for
𝑠 and 𝑠′, cannot be reduced; however, in practice it still benefits
from the shared access via e.g., SIMD and reduced invocation cost.

6 EXPERIMENTAL STUDY
Using real-life and synthetic graphs, we evaluated the performance
ofMITra for common multi-instance graph computations.

6.1 Experimental Setup

Graphs. We used 8 real-life graphs and two graph generators,
rMat [15] and Grid-2d [45], that respectively generate dense and
sparse graphs of varying sizes (Table 2). Following[31, 45], we gen-
erated edge weights between [1, log |𝑉 |) uniformly at random.
Queries. Following [48, 57] that use vertices that are close to each
other in the data graph as queries, we randomly sampled a seed
vertex and run a BFS starting from the seed vertex to get 𝑘 vertices
as queries in data graphs. We generated 5 sets of queries for each
data graph by varying 𝑘 from 16, 32, 64, 128 to 256. We used the
same source vertices as input for all compared methods in a test.
We sampled three such seed vertices and generated three groups of
queries for each data graph; the average is reported.
Implementation. We implementedMITra in C++. All theMITra
arithmetic operators (Section 4.3) are available in both standard im-
plementation that loops over sources and the version that employs
Intel SIMD intrinsics (by default we used the later). As built-in li-
brary, we also implemented MITra-BFS, MITra-RCH, MITra-BellF,
MITra-Dijk,MITra-DS,MITra-PPR andMITra-SpMV by using con-
figurations in Table 1 and edge functions in Section 4.1 and 5.
Comparisons. We compared the performance ofMITra algorithms
with the following MIP methods (see Table 3 for a full list).
(a) Serial algorithms. We compared with serial algorithms for all 7
computations of Section 2. Among them, serial BFS/Reachability,
Bellman-Ford and PPR use their built-in implementations in Ligra [45]
from [6], a popular open-source graph framework.We implemented
SpMV in Ligra following PPR. Since we are not aware of any frame-
work that supports Dijkstra, we implemented a serial Dijkstra based
on the classic implementation [16]; similarly for Δ-stepping [34].
(b) One-off algorithms. We also compared with MS-BFS [48] and
MS-Dijkstra [57], the only two one-off algorithms we are aware of.
Configuration. The experiments were run on an r6i.8xlarge AWS
EC2 instance, with 256 GB of memory. We used one thread by dis-
abling hyperthreading for all the tests. Ligra uses parallel_for

Table 3: MIP methods used in the experiments

Category Computation Method Implementation

Serial

BFS/Reachability Ligra-BFS

open source [6]Bellman-Ford Ligra-BellF
PPR Ligra-PPR
SpMV Ligra-SpMV
Dijkstra kDijkstra implemented following [16]

Δ-stepping k´-stepping implemented following [34]

One-off BFS/Reachability MS-BFS open source [7]
Dijkstra MS-Dijkstra implemented following [57]

MITra

BFS MITra-BFS

this work

Reachability MITra-RCH
Bellman-Ford MITra-BellF

Dijkstra MITra-Dijk
Δ-stepping MITra-DS

PPR MITra-PPR
SpMV MITra-SpMV

loops to explore vertices and iterate over their neighbors in paral-
lel, where parallel_for is implemented by using OpenMP/Cilk
[6, 45]. To avoid parallelization overhead over a single thread, we
replaced such parallel_for with traditional for loops. Each ex-
periment was run 3 times; the average is reported.

6.2 Performance

Overall performance. Varying the number 𝑘 of sources from 16 to
256, we tested the run time of all methods over all real-life graphs.
MITra Vs. serial algorithms.We first comparedMITrawith all serial
algorithms in Table 3. The results are shown in Figures 4a-4i.
(1) MITra is efficient. Over all 8 graphs, MITra-BFS, MITra-RCH,
MITra-BellF,MITra-Dijk,MITra-DS,MITra-PPR andMITra-SpMV
is on average 8.73x, 33.45x, 10.38x, 19.7x, 2.76x, 7.13x and 7.71x
faster than Ligra-BFS (BFS), Ligra-BFS (Reachability), Ligra-BellF,
kDijkstra, k´-stepping, Ligra-PPR and Ligra-SpMV, respectively, up
to 35.47x, 140.61x, 49.3x, 62.67x, 8.7x, 11.9x and 20.31x.
(2) The speedup ofMITra over serial methods increases when more
queries are used. For instance, MITra-RCH is 19.02x faster than
Ligra-BFS over LiveJournal with 16 queries, while this goes up to
86.62x with 256 queries; similarly for other algorithms and graphs.
(3) MITra consistently outperforms serial algorithms for Reacha-
bility, Bellman-Ford, Dijkstra, PPR and SpMV in each and every
test; it is consistently faster than Ligra-BFS over dense graphs, e.g.,
LiveJournal, Pokec, Twitter and UKDomain.

However, over sparse graphs, e.g., EUTraffic, Ligra-BFS is even
faster than the one-off MS-BFS, and faster thanMITra-BFS, when
the number of queries is low, e.g., 16 (Fig. 4d). This is because the
cost of BFS edge functions is rather small and over sparse graphs
the chance of sharing traversal across queries is lower than over
dense graphs. Hence, the benefit of MIP could be cancelled out by
the overhead when there is no sufficient sharing available.
MITra Vs. one-off algorithms. We compareMITrawith one-off algo-
rithms, i.e.,MS-BFS for BFS and Reachability,MS-Dijkstra for SSSP.
(1) For BFS,MITra has performance comparable to the heavily engi-
neered MS-BFS for BFS queries, despite that it is a MIP framework
and cannot implement algorithm specific optimizations inMS-BFS.

Indeed,MITra-BFS is even 4.49x faster thanMS-BFS over all 4
sparse graphs in Table 2 while MS-BFS is 1.65x faster than MITra-
BFS over the dense graphs. This is because MS-BFS implements
specific optimizations for dense graphs, e.g., aggregated neighbor
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Figure 4: Running time (Section 6.2) and #edges (Section 6.3) of all methods with varying number (𝑘) of queries

processing, that add around 1.5x to 2x of speedup to MS-BFS ac-
cording to [48]; they are not possible to be incorporated toMITra as
a generic framework. Due to the frontier representation inMITra
(Section 4.3), MITra-BFS is faster than MS-BFS over sparse graphs.

The case for MITra-Dijk vs. one-off MS-Dijkstra is similar. On
averageMS-Dijkstra is only 3.35% faster thanMITra-Dijk.
(2) For Reachability,MITra-RCH is even 19.36x faster thanMS-BFS
on average (2.31x over dense graphs and 36.41x over sparse graphs).
This is because, for Reachability, multi-instance BFS (evenMS-BFS)
is not optimal anymore due to the sharing opportunities that are
missed by BFS. This also demonstrates the benefit of frontier-
ranking model for systematically modeling and capturing sharing.
Breakdown. We further examined the efficiency of MITra by pro-
filing its CPU consumption. We divide each algorithm into three
parts: (a) initialization that prepares vertex properties and associ-
ated data structures, (b) computation logic, i.e., edge function, and
(c) traversal logic, which includes all other steps except those in
(a) and (b). Using perf, we examined the CPU cycles consumed by
each part with varying number of queries. The results of Ligra-BellF
andMITra-BellF over UKTraffic are shown in Fig. 4j.
(1) The total number of CPU cycles used by MITra-BellF is smaller
than Ligra-BellF in all cases, consistent with their running time.
(2) The degree of traversal sharing by MITra grows substantially
with increasing number of queries. For instance, the traversal logic
of Ligra-BellF takes 2.39xmore CPU cycles than that ofMITra-BellF
with 16 queries, while this goes up to 42.89x with 256 queries.
(3) The reduction of MITra-BellF over Ligra-BellF on computation
logic also grows with increasing number of queries, e.g.,Ligra-BellF
costs 1.71x more CPU cycles on edge functions thanMITra-BellF
with 16 queries, while this goes up to 4.42x with 256 queries. The

reduction is relatively lower than traversal cost in (2) above since
merging execution of edge functions does not necessarily reduce the
total amount of work; nonetheless, it still reduces CPU consumption
due to reduced invocation cost, better data locality and SIMD.

6.3 Effectiveness of Sharing
To understand howMITra gains its speedups, we further evaluated
the effectiveness of sharing across instances, by examining the total
number of edge accesses (#edges) of all methods over all graphs.
(1) As shown in Figures 4k-4o,MITra consistently accesses fewer
edges (edge function invocations) than serial algorithms do. On av-
erage, serial BFS, Reachability, Bellman-Ford, Dijkstra, Δ-stepping
and PPR and SpMV access 23.98, 41.62, 127.74, 64.44, 66.91, 96.75
and 102.46 times more edges thanMITra-BFS,MITra-RCH,MITra-
BellF,MITra-Dijk,MITra-DS,MITra-PPR andMITra-SpMV do.
(2) It is justified to use #edges as a conceptual level measure of MIP
algorithms as #edges of all methods is largely consistent with their
performance in Section 6.2. However, improvement over #edges
does not always exactly match efficiency speedups. For instance,
#edges of both one-offMS-BFS andMITra-BFS is lower than that
of Ligra-BFS in all cases, while, however, Ligra-BFS is even faster
over sparse graphs, e.g., EUTraffic, for the reason discussed in
Section 6.2. However, for all the other cases where edge functions
are heavier than BFS or there is sufficient sharing,MITra and one-
off algorithms still consistently outperform serial ones as expected.

6.4 Effectiveness of Optimization
We also evaluated the effectiveness of optimization inMITra: SIMD
and TrackFree (recall Section 4.3). For each algorithm we fixed the
query number to 256 and varied the optimizations applied to it
(if applicable) cumulatively and in the order: SIMD and TrackFree.
Figure 5 reports the time of the algorithms.
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Figure 5: Effectiveness of SIMD and TrackFree optimization inMITra (Section 6.4)
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(b) Grid-2d: BFS/Reachability
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(c) rMat: Bellman-Ford
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Figure 6: Experimental results over synthetic graphs with varying number |𝑉 | of vertices (Section 6.5)

SIMD. We find that SIMD provides an evident performance boost in
MITra, e.g., on average 1.96x, 1.42x, 1.61x, 2.27x and 2.2x of speedup
for Bellman-Ford, Dijkstra, Δ-stepping, PPR and SpMV, respectively,
over all graphs.MITra-BFS andMITra-RCH do not exploit SIMD as
their edge function requires logical operations only that are already
implemented with bitwise operators by default.
Tracking-free traversal (TrackFree). TrackFree substantially im-
proves MITra SSSP algorithms. It improves the efficiency of MITra
with SIMD by 3.06x, 1.39x and 4.4x on average for Bellman-Ford,
Dijkstra and Δ-stepping, respectively, for all queries over all graphs,
reducing #edges by 2.69x, 1.18x and 3.23x.

TrackFree also demonstrates a noticeable speedup for Reach-
ability, PPR and SpMV algorithms: it gives an average speedup
of 1.16x, 1.48x and 1.34x for MITra-RCH, MITra-PPR and MITra-
SpMV overMITra with SIMD respectively. Due to their traversal
logic, TrackFree does not reduce their edge accesses; hence the
improvement for them is not as good as for SSSP algorithms. Recall
that TrackFree does not apply to BFS; hence we do not report BFS.
SIMD+TrackFree. Putting together, they improve plain MITra by
1.16x, 5.8x, 2.02x, 5.62x, 3.31x and 2.77x on average for Reachability,
Bellman-Ford, Dijkstra, Δ-stepping, PPR and SpMV, respectively.

6.5 Scalability
Using rMat and Grid-2d, we evaluated the performance ofMITra
over dense and sparse synthetic graphs of varying sizes.
Scalability. We first tested the running time of all methods with
256 sources over dense and sparse graphs generated by rMat and
Grid-2d, respectively. The results for BFS, Reachability and Bellman-
Ford are shown in Figures 6a-6d.
(1)MITra-RCH is consistently the fastest among all BFS and Reach-
ability methods over both dense and sparse graphs of all sizes,
and its improvement over others even grows with larger graphs,
e.g.,110.79x faster than Ligra-BFS over rMat with 223 vertices, up
to 132.9x with 227 vertices (Fig. 6a); similarly for Bellman-Ford.
(2) For the same reason as in Section 6.2, Ligra-BFS is the best among

all BFS methods over sparse Grid-2d graphs, but its speedup over
MITra-BFS is moderate, e.g., below 35% in all cases.MITra-BFS is
consistently faster thanMS-BFS, e.g., by 1.29x over Grid-2d with
223 vertices; the speedup increases to 2.79x with 227 vertices.
Memory overhead. We examined the memory cost of all meth-
ods over graphs with varying sizes via Intel VTune profiler. The
results for Bellman-Ford and SpMV over rMat graphs are shown in
Fig. 6e; the results over Grid-2d are almost identical. We find that
the memory footprint ofMITra algorithms is dominated by the size
of vertex properties, e.g., over 92.5% for SpMV over rMat of all sizes.
Moreover, the size is determined by property type and the numbers
of vertices and sources. For instance, over rMat with 227 (rMat27)
vertices, the vertex properties ofMITra-BellF take 138.5 GB of mem-
ory, which is the same as that ofMITra-SpMV over rMat26 since
MITra-SpMV uses twice as many as vertex properties (integers) as
MITra-BellF (MITra-SpMV over rMat27 runs out of memory).

6.6 Discussion
Summary. We find that, despite its ease of use, on averageMITra is
8.73x, 33.45x, 10.38x, 19.7x, 2.76x, 7.13x and 7.71x faster than serial
algorithms for multi-instance BFS, Reachability, Bellman-Ford, Di-
jkstra, Δ-stepping, PPR and SpMV, respectively, and is comparable
to one-off algorithmMS-BFS [48] for BFS andMS-Dijkstra [57] for
SSSP. This is due to its capability of extracting sharing via reduced
edge accesses, and effective optimizations underlying its interface.
Limitation. MITra has its limitations. (1) Algorithms with a light-
weight edge function may not benefit fromMITra over very sparse
graphs, in particular with few sources, e.g., BFS over EUTraffic
with 16 sources. This is becausewith few sources over sparse graphs,
the amount of traversal sharing is relatively low, which also leads
to low computation sharing due to the lightweight edge functions.
Hence the overhead of sharing may outweigh its benefits. However,
with a heavier edge function, e.g., SSSP algorithms, MITra is still
effective over sparse graphs. (2) MITra does not help if the edge
functions are heavy but mostly due to imperative instructions that
cannot useMITra operators. For instance, regular path query (RPQ)



algorithms [26] over graphs spend most time on examining the au-
tomata that encode the queries upon edge accesses, and hence may
not be improved by MITra. (3) MITra does not apply to algorithms
without input sources, e.g., computing connected component [16].
Making practical use of MITra. Based on the observations, we
give a general guideline for using MITra in practice. (a) We first
decide whether the target algorithm A suits MITra, by referring
to the discussion of limitations above. (b) If so, we then estimate
the memory cost. Given memory budget 𝑀 , data graph 𝐺 (𝑉 , 𝐸),
a set 𝑆 of sources and the number 𝑝 of vertex properties of data
type 𝑇 used by the edge function, we calculate the number 𝑘 of
queries that could be processed in one go as 𝑘 =

𝑀−|𝐺 |
𝑝∗|𝑉 |∗sizeof(𝑇 ) .

One can divide the sources into ⌈ |𝑆 |
𝑘
⌉ groups for processing. (c)

Finally, we decide the configuration and optimization for A cast
in MITra, by referring to Section 3.2 for the choice of vertex ranks
and Section 4.3 for optimization options.

7 RELATEDWORK
We categorize related work as follows.
Multi-instance processing, often dubbed as multi-query processing,
has been well studied for SQL [43, 44], XQuery [14], SPARQL [28,
39], subgraph [41] and regular path query (RPQ) [12]. They identify
common sub-queries and re-use them to answer multiple queries.
Instead, we consider graph traversals for the same queries but
instantiated with multiple source vertices.

There has also been work on developing one-off MIP algorithms
that are crafted and optimized for specific graph traversal problems.
For example, MS-BFS [24, 48] is an MIP algorithm that executes
BFS searches starting from multiple source vertices. It represents
graphs as adjacency lists and develops implementation and heuristic
techniques that share the access to the adjacent lists for multiple
source vertices when possible. Similarly, multi-source algorithms
have been developed for shortest path computations over multi-
core machines [57] and distributed Hadoop clusters [29].

MITra differs from this as follows. (1) In contrast to one-off ap-
proaches that are algorithm specific, MITra is a generic framework
for composing MIP algorithms for all common graph traversals.
Conceptually, one-off algorithms, e.g.,MS-BFS, are an application
of MITra. (2) In addition, MITra provides a unified abstraction of
MIP algorithms, allowing us to deduce new algorithms and ana-
lyze their sharing capability. Indeed, by simply changing the vertex
ranks ofMITra-BFS, i.e.,MS-BFS framed inMITra, we obtained a
new MIP algorithm that has provably higher level of sharing and is
substantially faster than MS-BFS for Reachability. (3) One-off algo-
rithms often target specific applications over certain type of graphs,
e.g.,MS-BFS is engineered for small-world graphs. In contrast, as
a framework MITra targets all types of graphs, sparse or dense.
Indeed, the frontier implementation of MITra makes MITra-BFS
even faster than MS-BFS over sparse graphs.
Graph computation frameworks. There has been a large number of
general-purpose distributed [1, 19, 23, 30, 32, 49, 55] and paral-
lel [20, 27, 45] graph frameworks. They target traditional single-
instance graph algorithms and do not help with multi-instance
computations. In addition, with the frontier-ranking model, MITra
can express algorithms (e.g., Dijkstra) beyond the expressive power

of these frameworks, even for single-instance algorithms. MITra is
orthogonal to and complements prior art in parallel frameworks.
Indeed, one can incorporate the parallelism extraction methods
of parallel frameworks into MITra by exploring vertices in each
frontier in parallel, supporting parallel multi-instance computation.

Also related is the study of parallel frameworks for concur-
rent iterative graph computation jobs [31, 33, 37, 53, 56, 58, 60].
They optimize groups of jobs via scheduling to increase paral-
lelism [33, 56, 58] and cache hit rate [31], which is often jointly
guided by hardware and job characteristics. They do not explore any
computation sharing across jobs, except for SimGQ [53, 54], which
allows computation sharing across BFS-like iterative jobs in parallel.

Our work differs from the research as follows. (1) simGQ is re-
stricted to BFS-like computations, which are only one instantiation
ofMITrawith #round as rank, F as a list and 𝛿 = 1. (2) simGQ gives
no abstraction of multi-instance traversals; hence, it can neither
characterize the sharing degree of MIP algorithms that MITra is
capable of, nor compose algorithms with traversal logic different
from BFS, e.g., MITra-RCH, MITra-Dijk and MITra-DS. (3) simGQ
builds on top of Ligra and does not have components similar to
MITra operators and optimizations, e.g., SIMD and TrackFree. As
a result, it extracts less traversal sharing than MITra and cannot
convert traversal sharing to computation sharing. Hence, even for
algorithms that simGQ supports, e.g., BFS and Bellman-Ford, its
speedup over Ligra as reported in [53, 54] is much lower thanMITra,
e.g., 5.63x (256 sources) and 1.67x (64 sources) by simGQ for BFS
and Bellman-Ford, respectively, over LiveJournal vs. 35.61x (256
sources) and 2.88x (64 sources) by MITra. (4) Due to the higher
level of sharing, MITra is evidently more effective with growing
number 𝑘 of sources, while simGQ sees only marginal improve-
ments (cf. [53, 54]). (5) Similar to MS-BFS, simGQ is designed for
small-world graphs whileMITra targets all types of graphs.

8 CONCLUSION
We have proposedMITra, a framework for composing MIP graph al-
gorithms that are as efficient as highly optimized one-off algorithms
while being as simple as traditional single-instance algorithms.

There is naturally more to be done. One direction is to extend
MITra for synthesizing parallel MIP algorithms over multi-core
machines. A simple idea is to adopt Ligra’s approach to paralleliza-
tion, by employing OpenMP/Cilk for iterating over frontiers via
“parallel_for” [6, 45]. While this works for BFS-like algorithms
targeted by Ligra that produce one frontier at a time over shared-
memory machines, it is much more challenging when it comes to
generic frontier-ranking algorithms supported byMITra, which are
more expressive and include e.g., Dijkstra and Depth-First-Search
that are known hard to parallelize. Another direction is to synthe-
size distributed MIP algorithms for vertex-centric systems, to share
both computation and communication cost among instances.
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