
Front. Comput. Sci., 2016, 10(3): 387–398

DOI 10.1007/s11704-015-4515-1

Big graph search: challenges and techniques

Shuai MA, Jia LI, Chunming HU , Xuelian LIN, Jinpeng HUAI

State Key Laboratory of Software Development Environment, School of Computer Science and Engineering,

Beihang University, Beijing 100191, China

c© Higher Education Press and Springer-Verlag Berlin Heidelberg 2015

Abstract On one hand, compared with traditional rela-

tional and XML models, graphs have more expressive power

and are widely used today. On the other hand, various ap-

plications of social computing trigger the pressing need of a

new search paradigm. In this article, we argue that big graph

search is the one filling this gap. We first introduce the ap-

plication of graph search in various scenarios. We then for-

malize the graph search problem, and give an analysis of

graph search from an evolutionary point of view, followed

by the evidences from both the industry and academia. After

that, we analyze the difficulties and challenges of big graph

search. Finally, we present three classes of techniques to-

wards big graph search: query techniques, data techniques

and distributed computing techniques.

Keywords graph search, big data, query techniques, data

techniques, distributed computing

1 Introduction

With the rapid development of social computing, Internet and

various applications have brought about exponentially grow-

ing data. According to the recent report of the UN’s interna-

tional telecommunications union (ITU), Internet users will hit

3 billion globally by the end of 20141); The total number of

monthly active Facebook users has reached over 1.3 billion,

Received November 13, 2014; accepted January 12, 2015

E-mail: hucm@buaa.edu.cn

and the increment of its users from 2012 to 2013 is about

22%2). All these indicate the coming of an era of big data.

Indeed, “data are becoming the new raw material of busi-

ness: an economic input almost on a par with capital and

labour [1]”. How to filter unnecessary data and find the de-

sired information so that one could easily make timely and

accurate decisions? This has become one of the most press-

ing needs in such a big data era.

Compared with traditional relational and XML models,

graphs have more expressive power, and play an important

role in many applications, such as social networks, biological

data analyses, recommender systems, complex object iden-

tification and software plagiarism detection. Essentially, this

is because the core data involved in these applications can be

conveniently represented as graphs. For instance, a social net-

work (e.g., Facebook3), Twitter4) and Weibo5)) has all kinds

of social users/activities, which is essentially a graph, whose

nodes denote users/activities and edges denote their relation-

ships, such as friendships, respectively.

The wide use of graphs has brought about the emergence of

big graph search, i.e., retrieving information from big graphs

in a timely and accurate manner, which has drawn more and

more attention from both the industry and academia [2–4].

We first give an overview of the application scenarios of

graph search.

(1) Social networks and the Web

Nowadays, the rapid development of the Web and social

networks has made significant influences on people’s social

1) http://www.itu.int/en/ITU-D/statistics
2) http://www.statisticbrain.com/facebook-statistics/
3) http://www.facebook.com
4) http://twitter.com
5) http://weibo.com/

388 Front. Comput. Sci., 2016, 10(3): 387–398

and personal behaviors. Take for instance, Facebook: (a) the

total number of its users is very large: there are more than

1.3 billion monthly active users and 0.68 billion mobile users

till June 2014; (b) the relations among users and other objects

are tight: a user has 130 friends and likes 80 pages on aver-

age; (c) there is a large amount of information dissemination

on Facebook: more than 4.75 billion pieces of content are

shared daily; (d) the site visit of Facebook is quite frequent:

23% of users check Facebook five times or more daily, and a

user spends 20 minutes on the site per visit on average2).

As mentioned earlier, social networks can be easily repre-

sented by graphs, which comes with all kinds of graph search

techniques [5–8], including neighbor query and social net-

work compression [9]. Similar to social networks, the Web

can be expressed as a big graph as well, whose nodes de-

note Web pages, and edges indicate hyperlink relationships

between Web pages. In fact, the Web site classification and

Web mirror detection problems can be treated as the graph

classification [10] and graph matching problems [11], respec-

tively.

(2) Recommender systems

Recommendation has found its usage in many applica-

tions, such as social matching systems, and graph search

is a useful tool for recommendation [12]. Consider the ex-

ample that a headhunter wants to find a biologist (Bio) to

help a group of software engineers (SEs) analyze genetic

data [13, 14]. To do this, she uses an expertise recommen-

dation network G, as depicted in Fig. 1, in which nodes

denote persons labeled with their expertise, and edges in-

dicate recommendations, e.g., HR1 recommends Bio1, and

AI1 recommends DM1. The biologist Bio needed is specified

with a pattern graph Q, also shown in Fig. 1. We could find

that Bio has to be recommended by: (a) an HR, an SE and a

data mining expert (DM) together, as data mining knowledge

is required for the job, (b) the SE is also recommended by

the HR, and (c) there is an artificial intelligence expert (AI)

who recommends the DM and is recommended by the DM.

Fig. 1 A recommendation network

Based on the pattern graph Q and data graph G, the head-

hunter could find the suitable biologist in G who meets the

requirements, by utilizing graph search techniques developed

in [13, 14].

(3) Complex object identification

Data quality problem costs U.S. business more than $600

billion a year [15], and data cleaning techniques can help mit-

igate the losses to a large extent, e.g., it delivers an overall

business value of more than “600 million GBP” each year at

BT by adopting data cleaning tools [16]. Data cleaning typ-

ically contains two central issues: record matching and data

repairing [17]. Complex object identification is the most dif-

ficult issue in record matching, which is to identify complex

objects referring to the same entity in a physical world. One

possible solution is to represent complex objects as graphs,

and then to identify the same ones by utilizing graph search

techniques, such as subgraph isomorphism and graph homo-

morphism [11, 18].

(4) Software plagiarism detection

With the popularity of open-source software, it gets much

easier for a less self-disciplined developer to use (part of)

other software without giving proper credits. Traditional pla-

giarism detection tools are not adequate for finding serious

software plagiarism cases. A novel plagiarism detection tool

has been developed based on graph search techniques [19].

Firstly, it transforms the source and target programs into pro-

gram dependence graphs [20]. Secondly, it tests the similar-

ity of the two program dependence graphs with subgraph iso-

morphism [18]. Finally, if the graph similarity is high enough,

it concludes the plagiarism. The rational behind this is that

the core control flow of programs, reflected by their program

dependence graphs, are hardly to be modified.

(5) Traffic route planning

Graph search is a common practice in transportation net-

works, due to the wide application of location-based services.

Consider an example taken from [21]. Mark is a driver in the

U.S. who wants to travel from Irvine to Riverside in Califor-

nia. (a) If Mark wants to reach Riverside by his car in the

shortest time, this can be treated as the classical shortest path

problem [22], based on which Mark can figure out his best

solution from Irvine to Riverside is by traveling along State

Route 261, as illustrated by Fig. 2(b) However, if Mark drives

a truck carrying with hazardous materials, which may not be

allowed to cross over some bridges or railroad crossings, then

a pattern graph approach specifying route constraints with

regular expressions may be needed to find an optimal trans-

port route [23].

Shuai MA et al. Big graph search: challenges and techniques 389

Fig. 2 A route planning example

In addition, graph search techniques have also been

adopted in virtual networks [24], pattern recognition [25] and

VLSI design [26], among other things.

In the rest of this article, we first give a formal definition

of graph search and explain why it is important in Section 2.

Then we introduce the challenges of big graph search in Sec-

tion 3, followed by techniques towards big graph search in

Section 4. Finally, we conclude in Section 5.

2 Graph search, why bother?

In this section, we first formalize the concept of graph search.

Then we give an analysis of graph search from an evolution-

ary point of view and point out its urgent need, followed by

the evidences from the industry and academia.

2.1 What is graph search

We first formalize the concept of graph search:

Given two graphs Gp, also referred to as the pattern graph

and Gd, also referred to as the data graph, graph search is

(1) to decide whether Gp “matches” Gd, or (2) to identify the

subgraphs of Gd that Gp “matches”.

Here graphs consist of nodes and edges, both of which are

often attached with labels indicating all kinds of information.

Pattern graphs are usually small, e.g., with several or dozens

of nodes/edges, while data graphs are often big, e.g., with

billions of nodes/edges.

Graph search covers two classes of queries: (1) the first

class is boolean queries, i.e., to answer “yes” or “no”, and

(2) the second one is functional queries, i.e., to identify and

return the matching subgraphs. It is obvious that functional

queries may need the aid of boolean queries.

Remarks. The above definition of graph search is quite gen-

eral, as different semantics of “match” lead to different graph

search queries [2, 3]. Most, if not all, common graph queries

belong to graph search queries, such as node queries (e.g.,

neighbor query [9]), path queries (e.g., reachability [27] and

shortest path [22]) and subgraph queries (e.g., graph homo-

morphism [11], subgraph isomorphism [18], graph simula-

tion [6] and its extension strong simulation [13]).

2.2 An evolutionary point of view

A serious question arises naturally: why do we need another

search paradigm — graph search? We next answer this ques-

tion from an evolutionary point of view.

Consider the evolution roadmap of information search

shown in Fig. 3. The emphasis of information search has un-

dergone a serious shift, i.e., from file systems, to database

systems, to the World Wide Web, and to the most recent so-

cial networks:

Fig. 3 The evolution of information search

• File systems. Since the 1960s, computers have been

equipped with modern operating systems [28]. The file

system in an operating system is an abstraction to store

and organize a set of computer files, and it usually sup-

ports users to look for specific files, i.e., simple search-

ing functionalities.

• Database systems. In the mid-1960s, database systems

began being applied in business, and, subsequently, re-

lational databases played a dominant role. Since the

late 1970s, the invention of structured query language

(SQL) has significantly promoted the use of databases

[29].

• The Web. Since the 1990s, search engines, such as

Google, Bing and Yahoo!, have been widely used due to

the blossom of the World Wide Web. These search en-

gines unanimously adopt the simple but very useful ap-

proach — keyword search, which provides people with

a convenient and easy way to search specific informa-

tion on the Web.

• Social networks. From the end of last century, with the

rising of Web 2.0, social networks have made signif-

icant influences on the society. However, a dominant

search paradigm seems missing in such an era of social

390 Front. Comput. Sci., 2016, 10(3): 387–398

computing and big data.

As the above analysis shows, an important IT invention,

e.g., file systems, database systems and the Web, usually

triggers the emergence of a novel search paradigm. We are

essentially in a situation to look for one for social comput-

ing and social networks, and we believe that graph search

is the one filling the gap. The “graph search”6) and “knowl-

edge graph”7) released by Facebook and Google, respec-

tively, shed light on this. However, another question arises:

why could not we simply use SQL or keyword based search?

(1) Graph search vs. SQL search

SQL search is a very strong supporting tool for search-

ing information from relational database systems. However,

it is not appropriate for searching information from graphs

even though graphs could be stored using relations, due to its

disability and inconvenience for answering recursive queries

such as graph reachability and shortest paths [30]. Indeed, for

simple graph queries that SQL search would do, graph search

could do even better. We next illustrate this with an exam-

ple taken from [31], a simple searching case of “finding the

names of all of Alberto Pepe’s friends in a social network”.

Case 1: Social networks are stored using relations

There are two relations: person(identifier, name) for

storing a person’s unified identifier and its name, and

friend(person_a, person_b) for storing the friendship of per-

sons with identifiers person_a and person_b. In addition, two

B+–tree indexes are built on each column of the person rela-

tion: the person.identifier and person.name indexes, and one

index is built on the person_a column of the friend relation:

the friend.person_a index. We assume that there are in total

n persons and m friendships. The relational representation is

presented in Fig. 4.

Fig. 4 Relational representation

To get the names of Alberto Pepe’s friends, three steps are

necessary, as shown in the following.

(a) Find the unique identifer of “Alberto Pepe” from rela-

tion person, which takes O(log2 n) time using the per-

son.name index.

(b) Find all the k identifiers of the friends of “Alberto Pepe”

from relation friend with the identifer found in (a),

which takes O(log2 n+k) time using the friend.person_a

index.

(c) Find the k friends’ names from relation person with the

k identifiers found in (b), which takes O(k log2 n) time

using the person.identifier index.

Case 2: Social networks are stored using naive graphs

The person and friendship information can be stored as a

graph as shown in Fig. 5. Each person can be represented as

a node labeled with the person’s name and unified identifier,

and the friendship between two persons can be represented as

an edge between the two corresponding nodes. A B+–tree in-

dex is built on the graph, vertex.name index, to quickly locate

the position of a node in the graph with a person’s name.

Fig. 5 Graph representation

To get the names of Alberto Pepe’s friends, two steps are

needed, as shown below.

(a) Identify the node with name “Alberto Pepe”, which

takes O(log2 n) time using the vertex.name index.

(b) Find the k friend nodes of the node found in (a) by

traversing its adjacent neighboring nodes and get the

friend names directly in the k node labels, which takes

O(k + y) time such that k + y is the total number of the

neighboring nodes.

It is obvious that the searching speed is improved from

O((k + 2) log2 n) to O(log2 n) when using the graph represen-

tation, instead of the relational representation. The improve-

ment is crucial when n is really large, e.g., when there are

billions of users. Of course, one could add redundant infor-

6) https://www.facebook.com/about/graphsearch
7) http://www.google.com/insidesearch/features/search/knowledge.html

Shuai MA et al. Big graph search: challenges and techniques 391

mation to speed up its efficiency, which results in extra space

cost in turn. Hence, for big graph search, the graph search

approach is much superior to the SQL search approach.

(2) Graph search vs. keyword search

The traditional keyword based searching approach is

mainly for retrieving information from the Web, which is not

appropriate for searching information from social networks.

The information on the Web is usually isolated and object–

object weak tied from each other, and mainly about “histor-

ical and existing” information, i.e., what happened and hap-

pening. Social computing generally takes the social factors

into consideration, such as the social structure, organization

and activity, which makes relations a dominant role in so-

cial search. Besides, social data are usually person–person

strong related or person–object strong related. This makes

the future and relation information particularly important for

social search. Under these circumstances, the keyword based

searching approaches cannot meet the requirements raised by

social computing and social networks nowadays.

Hence we argue that graph search is a new searching

paradigm for social computing in the big data era. Indeed,

Facebook has provided a new searching technique named

“Graph Search”, which allows users to search for informa-

tion using simple natural language sentences, e.g., “Restau-

rants in New York that my friends like”, “Photos taken in

Hawaii of my friends” and “National parks where my friends

have been to”. Besides, the development of social networks

has also promoted the urgent need of a new search engine in

turn.

2.3 Joint efforts of the industry and academia

Recently, we have conducted a survey on the number of pa-

pers on graphs published in the top three influential database

system conferences (SIGMOD, VLDB and ICDE) ever since

2000. The result is shown in Fig. 6, from which we have

found that: (a) from around 2000 (the emergence of Web

2.0), researchers began to focus on the study of graphs, (b)

the number of papers on graphs has been increasing continu-

ously since then, (c) from 2008, graphs have been a hot topic

in the field of database research, and (d) there is a burst of the

number of papers on graphs in 2014.

Many well-known research institutions and companies

have been concentrating on the research and applications

of graphs. For example, Microsoft’s Trinity project8) and

“Horton - Querying Large Distributed Graphs” project9)

for data center; large-scale graph processing system Pregel

[32] of Google; “Knowledge Acquisition and Management”

project10) of Yahoo!; Neo4j’s open-source graph database11) ;

“Graph Search” of Facebook6); and the research teams from

academia such as the University of California Santa Barbara,

University of Edinburgh, University of New South Wales,

Chinese University of Hong Kong, and Beihang University.

Fig. 6 Statistics of papers (published in SIGMOD, VLDB and ICDE) on
graphs

The joint interests and efforts from both the industry and

academia provide more evidences on the power and impor-

tance of graph search.

3 Challenges of big graph search

In this section, we first introduce the FAE rule that is impor-

tant for a search engine, and we then point out its difficulties

and challenges for big graph search.

3.1 The FAE rule

The FAE rule says that the quality of search engines involves

with three key factors: friendliness, accuracy and efficiency,

as illustrated in Fig. 7, and that a good search engine must

provide the users with a friendly query interface and highly

accurate answers in a fast way.

Fig. 7 The FAE rule

8) http://research.microsoft.com/en-us/projects/trinity
9) http://research.microsoft.com/en-us/projects/ldg
10) http://research.yahoo.com/project/
11) http://neo4j.org

392 Front. Comput. Sci., 2016, 10(3): 387–398

(1) Friendliness

It is necessary for a search engine to provide the users with

a friendly query interface such that the users could conve-

niently specify their searching conditions with small efforts.

Generally speaking, the keyword search on the Web only

requires users to enter several keywords, which is very user-

friendly. However, it cannot allow users to specify complex

search conditions like graphs (such as relationships among

keywords), and it only returns the Web hyperlinks that might

contain answers to users. Hence, this simpleness also brings

the gap between what the users want and what the users get.

In contrast, the results of graph search are much more accu-

rate as it allows users to further specify structural constraints

by designing various pattern graphs. However, it is definitely

inconvenient for users to enter pattern graphs as inputs even

for small pattern graphs, as it is hard for non-professional

users who are not familiar with the complex data graphs to

specify precise pattern graphs.

People are already making an effort for designing friendly

graph search interfaces. The technique developed by Face-

book allows users to specify pattern graphs with simple natu-

ral language sentences, as we mentioned earlier. And Yang et

al. [33] have recently proposed a novel graph search system

enabling schemaless and structureless graph querying, which

(a) provides a user-friendly interface where users can give

rough descriptive pattern graphs as queries, and (b) supports

various kinds of transformations such as synonym, abbrevia-

tion, and ontology. However, a completely friendly interface

meeting the requirements of practical applications is still on

its road for big graph search.

(2) Accuracy

It is necessary for a search engine to provide the users with

accurate answers.

When a user submits a query to a search engine, which rep-

resents the user’s searching goal, the search engine analyzes

the user’s input and tries to understand what the user wants.

Hence, to reach high searching accuracy, it is indispensable

to understand the users’ real intents for search engines. How-

ever, it is pretty common that there is a gap between what a

user wants and what she/he gets back from a search engine.

This is because it is a very challenging task to understand and

specify the users’ intents in a way such that a machine could

easily understand. For example, when a user submits “apple”

to a search engine, it is hard to distinguish the fruit apple from

the products of Apple Inc..

Common approaches [34,35] focus on query classification.

Given a query, these approaches try to classify the query to

some predefined classes. Recently, some researchers take into

account of the difference of individuals and attempt to ana-

lyze the intents of users by incorporating their search behav-

iors and preferences [36, 37].

Knowledge also plays an important role to understand the

user intent and to improve the searching accuracy. For exam-

ple, knowledge graph makes Google search engine more in-

telligent to understand the searching intents of users. When

having the keyword “apple” into Google search engine, it

will provide two extra panels in addition to a list of Web

hyperlinks, one for Apple Inc. and the other for the apple

fruit. Then users can click one to enlarge and get detailed in-

formation based on their intents, which allows users to get

more relevant results without having to visit other Web sites

to judge whether the information are relevant by themselves.

This is because Google now is able to understand the differ-

ence among these entities, and the nuance in their meanings,

with the aid of Knowledge Graph12) .

(3) Efficiency

How to search information in a fast way is a key for the

success of a search engine. It is also a fundamental problem in

database and information retrieval areas, especially when we

are dealing with big graphs today. We will introduce several

searching techniques for big graphs in detail in the coming

Section 4.

3.2 The challenges

The expressiveness of graphs naturally comes with more dif-

ficulties, and the emerging social applications raise more

challenges to search and manage big graphs.

According to statistics, for Facebook, there are over 1.3

billion monthly active users; for every 20 minutes, there are

1 million links shared, 2 million friend requests generated,

and 3 million messages sent2); similarly for Twitter, there are

over 0.6 billion users; every second there are 9 100 tweets

happened; and people query twitter search engine 2.1 billion

times every day13).

These statistics indicate the following. (a) Graph data

have reached hundred millions orders of magnitude [38]; (b)

Graph data are updated all the time, and the update amount

daily reaches hundred thousands orders of magnitude [39];

(c) Similar to traditional relational data [40, 41], graph data

have the data uncertainty problem due to the external reason

caused by data sampling and data missing and the internal

12) http://googleblog.blogspot.com/2012/05/introducing-knowledge-graph -things-not.html
13) http://www.statisticbrain.com/twitter-statistics

Shuai MA et al. Big graph search: challenges and techniques 393

reason caused by the dynamic changes in graph data; And,

even worse, (d) graph data are much more complex than rela-

tional and XML data. In summary, graph data have four key

features: big, dynamic, uncertain and complex [3]. The first

feature requires that graph search needs to strike a balance

between its time and space cost. When the graph is too large

to be processed on single machines, it is also necessary to

design efficient and effective distributed algorithms. The sec-

ond feature requires that graph search should take dynamic

changes and temporal factors into consideration. The last two

features require that graph search should design reasonable

models to capture uncertainties in graph data, and highly effi-

cient algorithms to answer graph search queries on uncertain

graphs.

These together make it an extremely challenging task to

develop a big graph search engine with a friendly query in-

terface, accurate answers and high efficiency.

4 Techniques towards big graph search

A fundamental issue in the big data era is the efficiency. In

this section, we present three classes of techniques for big

graph search: query techniques, data techniques and dis-

tributed computing techniques.

4.1 Query techniques

We first introduce two query techniques: query approxima-

tion and incremental computation.

(1) Query approximation

The core idea of query approximation is to transform a

class of queries Q with higher computational complexity into

another class of queries Q′ with lower computational com-

plexity and satisfiable approximate answers, as depicted in

Fig. 8 in which Q, Q′ and D denote the original query, ap-

proximate query and data, respectively. The major challenge

comes from the need of a balance between the query effi-

ciency and answer accuracy.

Fig. 8 Query approximation

We next explain the query approximation technique us-

ing strong simulation, a new graph pattern matching model

proposed in [13, 14]. Graph pattern matching is to find all

matched subgraphs in a data graph for a given pattern graph,

and it is often defined in terms of subgraph isomorphism. The

goodness of subgraph isomorphism is that all matched sub-

graphs are exactly the same as the pattern graph, i.e., com-

pletely preserving the topology structure between the pattern

graph and data graph.

Subgraph isomorphism is, however, np-complete [18], and

may return exponential many matched subgraphs. Recent evi-

dences have shown that subgraph isomorphism is too restric-

tive to find sensible matches in certain scenarios [6]. These

hinder the usability of graph pattern matching in emerging

applications.

To lower the high complexity of subgraph isomorphism,

various extensions of graph simulation [42] have been con-

sidered instead in [6, 27]. These extensions allow graph pat-

tern matching to be conducted in cubic-time. However, they

fall short of capturing the topology of data graphs, i.e., graphs

may have a structure drastically different from pattern graphs

they match, and the matches found are often too large to ana-

lyze.

To rectify these problems, strong simulation, a revision of

graph simulation, was proposed for graph pattern matching,

such that strong simulation (a) preserves the topology of pat-

tern graphs and finds a bounded number of matches, (b) re-

tains the same complexity as earlier extensions of graph sim-

ulation [6, 27], by providing a cubic-time algorithm for com-

puting strong simulation, and (c) has the locality property that

allows us to develop an effective distributed algorithm to con-

duct graph pattern matching on distributed graphs [13, 14].

(2) Incremental computation

When there are data updates, query answers typically need

to be re-computed to reflect the changes. In practice, big data

graphs are frequently modified, as we pointed out in Section

2, and it is too costly to recompute matches from scratch

every time when the data graphs are updated. Incremental

computation is a technique that attempts to reduce time by

reusing previous computing efforts and only computing those

answers that “depend on” the changed data, and it is depicted

in Fig. 9, in which Q, D and Δ denote the query, original data

and its updates, respectively.

Fig. 9 Incremental computation

It is worth mentioning that incremental algorithms have

been developed for various applications (see [43] for a sur-

vey). Thomas W. Reps has done pioneering work on the study

of incremental computation [43,44], and he observed that the

394 Front. Comput. Sci., 2016, 10(3): 387–398

complexity of incremental algorithms was more accurately

characterized in terms of the size of the area affected by the

updates, rather than the size of the entire input [44].

Next let’s take the indexing of Google search as an ex-

ample. It is known that the Web documents are crawled and

stored in a large repository, and are pre-indexed to speed

up the search efficiency and improve the user experiences.

The indexing process incurs a heavy workload, and Google

initially adopted some batch-processing approaches such as

MapReduce [45] to improve the efficiency, which is not sat-

isfactory when facing with constant changes. Google later on

developed Percolator [46], a system incrementally process-

ing updates on large data sets. That is, Google has converted

its batch-based indexing system into an incremental indexing

system. It was reported that compared with MapReduce, Per-

colator (a) reduced the average document processing latency

by a factor of 100, and (b) reduced the average age of result-

ing documents of Google search by 50% when processing the

same amount of documents per day [46].

4.2 Data techniques

One key feature of big data graphs is the large volume, and,

hence, the space complexity [47] of graph search starts rais-

ing more troubles. Here we introduce five techniques to boost

the search efficiency from the data point of view: data approx-

imation, data sampling, data partitioning, data compression

and data indexing.

(1) Data approximation

The core idea of data approximation is that given a class

of queries Q and a data set D, it transforms D into a smaller

data set D′ such that Q on D′ returns a satisfiable approxi-

mate answer in a more efficient way, as depicted in Fig. 10.

Similar to query approximation, the major challenge of data

approximation comes from the need of a balance between the

query efficiency and answer accuracy.

Fig. 10 Data approximation

We have adopted the idea in the process of dealing with

large graphs in the study of anomaly detection in graph

streams, when dealing with the matrix representation of a so-

cial graph, and we have both theoretically and experimentally

shown that simplifying the matrix by replacing a part of small

entry values with zero has few affects on the computation of

eigenvectors [48].

(2) Data sampling

Sampling is concerned with the selection of a subset of

data from a large data set. Instead of dealing with the entire

data set D for a query Q, the data sampling technique reduces

the size of the data set D by sampling, with a permission of

loss of accuracy to some extent in the query result [49]. In a

sampling process, it must be ensured that the sampled data

Δ obtained must reflect the characteristics and information of

the original data D, as depicted in Fig. 11.

Fig. 11 Data sampling

It is worth mentioning that Michael I. Jordan and his col-

leagues have proposed a new sampling approach –bootstrap–

to dealing with big data [50, 51].

(3) Data partitioning

Data partitioning is an effective method to execute queries

on large-scale data sets in a divide-and-conquer way. It parti-

tions a data set D into a set of relatively small data sets D1,

· · · , Dn such that D = D1∪· · ·∪Dn. Ideally, the final query an-

swer is assembled using the n answers on the set of small data

sets, and the analysis speed can be improved significantly.

The entire process is depicted in Fig. 12.

Fig. 12 Data partitioning

It is worth mentioning that graph partitioning has been ex-

tensively studied since the 1970’s [52–54], and has been suc-

cessfully used in various applications, e.g., circuit placement,

parallel computing and scientific simulation [54]. The graph

partitioning problem is in general a hard problem and is often

np-complete [53].

(4) Data compression

The principle of data compression is that compressing

by removing redundancies remains the capability to answer

the same question. There are many known data compression

methods that are suitable for different types of data, and pro-

duce different answers, but they are all based on the principle,

namely compressing data by removing redundancies from the

original data (see [55] for a complete reference). The benefits

of data compression lie in that it provides more possibilities

to work in main memory and potentials to work efficiently.

Shuai MA et al. Big graph search: challenges and techniques 395

Different from data sampling, data compression generates

a small data set D′ from the original data set D by remov-

ing redundancies and preserving the information only rele-

vant to queries, as depicted in Fig. 13. In addition, there are

usually no restrictions on the formats of the compressed data,

while data sampling normally keeps the original data formats.

There is a whole bunch of work on (lossy or lossless) graph

compression [9, 56–58]. As [59–61] show, some graph algo-

rithms can be speeded up by operating on compressed graphs

directly, which can be treated as query oriented compression,

and needs to invest more efforts to study.

Fig. 13 Data compression

(5) Data indexing

An index is a data structure that improves the speed of

queries by reducing search space, at the cost of update main-

tenance and extra storage. Indexes are commonly used for

querying relational databases [29] and information retrieval

of search engines [62].

When data graphs are relatively large, graph indexing tech-

nique can quickly prune data graphs that obviously mismatch

the pattern graph [63]. There already exist indexing methods

for (various kinds of) graph pattern matching [49]. There are

mainly three metrics for measuring whether an established

index is appropriate: the space cost, building time and query

time. The smaller the space of an index is, the less addi-

tional storage burden incurred. The building time represents

the time cost of creating the index, and the query time indi-

cates the time cost for the query process. When data graphs

are changed over time, the index refresh speed reflects its

adaptiveness to dynamic changes.

4.3 Beyond query and data techniques

We finally introduce the distributed computing technique, as

an example that utilizes the above query and data techniques

and beyond.

Distributed computing refers to the use of distributed sys-

tems to solve problems such that a problem is divided into

many tasks, each of which is computed on one or more ma-

chines, and which communicate with each other by message

passing [64, 65]. Distributed computing typically needs to

partition a data set D into relatively small data sets D1, . . .,

Dn, and distributes them on multiple computing machines, as

depicted in Fig. 14.

It is known that real-life graphs are typically way too large,

e.g., the Web graph of Yahoo! has about 14 billion nodes, and

there are over 1.3 billion users on Facebook. Hence, it is not

practical to handle large graphs on single machines. More-

over, real-life graphs are naturally distributed, e.g., Google,

Yahoo! and Facebook have large-scale distributed data cen-

ters. This says that distributed computing is inevitable facing

with big graphs.

Fig. 14 Distributed computing

We have developed a computation model for a large class

of distributed algorithms for graph simulation [66]. The

model consists of a cluster of identical machines, in which

one acts as a coordinator. Each machine can directly send an

arbitrary number of messages to another, and all machines

co-work with each other by local computations and message-

passing. Further, we also identify three complexity measures

on the performance of distributed algorithms related to the

computation model above: (a) visit times, which is the max-

imum visiting times of a machine, indicates the complexity

of interactions; (b) makespan, which is the evaluation of the

total computation time, is a measure of efficiency; (c) data

shipment, which is the size of the total messages shipped

among distinct machines during the computation, indicates

the network bandwidth consumption. However, these three

measures are typically controversial with each other, and how

to achieve a balanced strategy is a great challenge for design-

ing distributed algorithms.

Recently, many distributed graph processing systems have

been developed, which basically fall into two categories: one

makes use of MapReduce [45] or Spark [67] to speed-up big

graph processing [68–70], and the other uses different dis-

tributed computing models, such as Pregel [32], GraphLab

[71] and PowerGraph [72].

Remarks There exists no single technique that could fit all

for big graph search. That is, it is often necessary to combine

different techniques to obtain satisfiable solutions. We also

encourage interested readers to read a very recent article [73]

for discussions on the theory and techniques of big data, a

complement of this article.

396 Front. Comput. Sci., 2016, 10(3): 387–398

5 Conclusions

In this article we have investigated big graph search, a novel

promising search paradigm for social computing in the big

data era. First, we have analyzed the need of big graph search

with various applications, industrial and academic develop-

ments, and the evolution history of information searching

paradigms. Second, we have pointed out the challenges and

opportunities of big graph search. Finally, we have introduced

three types of techniques towards big graph search: query

techniques, data techniques and distributed computing tech-

niques.
Being a new paradigm for social computing, big graph

search has received extensive attentions. However, there is

obviously a long way to go for a big graph search engine that

meets various needs in practice.

Acknowledgements This work was supported in part by 973 program
(2014CB340300), National Natural Science Foundation of China (Grant No.
61322207) and the Fundamental Research Funds for the Central Universi-
ties.

References

1. Cukier K. Data, data everywhere: a special report on managing infor-

mation. Economist Newspaper, 2010

2. Ma S, Li J, Liu X, Huai J. Graph search: a new searching approach to

the social computing era. Communications of CCF, 2012, 8(11): 26–31

3. Ma S, Cao Y, Wo T, Huai J. Social networks and graph matching. Com-

munications of CCF, 2012, 8(4): 20–24

4. Ma S, Li J, Liu X, Huai J. Graph search in the big data era. Information

and Communications Technologies, 2013, 6: 44–51

5. Tian Y, Patel J M. Tale: A tool for approximate large graph matching.

In: Proceedings of the 24th IEEE International Conference on Data

Engineering. 2008, 963–972

6. Fan W, Li J, Ma S, Tang N, Wu Y, Wu Y. Graph pattern matching: from

intractable to polynomial time. Proceedings of the VLDB Endowment,

2010, 3(1): 264–275

7. Barcelo P, Hurtado C A, Libkin L, Wood P T. Expressive languages

for path queries over graph-structured data. In: Proceedings of the 29th

ACM Symposium on Principles of Database Systems. 2010, 3–14

8. Feng K, Cong G, Bhowmick S S, Ma S. In search of influential event

organizers in online social networks. In: Proceedings of the 2014 ACM

SIGMOD International Conference on Management of Data. 2014, 63–

74

9. Maserrat H, Pei J. Neighbor query friendly compression of social net-

works. In: Proceedings of the 16th ACM SIGKDD International Con-

ference on Knowledge Discovery and Data Mining. 2010, 533–542

10. Schenker A, Last M, Bunke H, Kandel A. Classification of web docu-

ments using graph matching. International Journal of Pattern Recogni-

tion and Artificial Intelligence, 2004, 18(3): 475–496

11. Fan W, Li J, Ma S, Wang H, Wu Y. Graph homomorphism revisited for

graph matching. Proceedings of the VLDB Endowment, 2010, 3(1):

1161–1172

12. Terveen L G, McDonald D W. Social matching: a framework and re-

search agenda. ACM Transactions on Computer-Human Interaction,

2005, 12(3): 401–434

13. Ma S, Cao Y, Fan W, Huai J, Wo T. Capturing topology in graph pattern

matching. Proceedings of the VLDB Endowment, 2011, 5(4): 310–321

14. Ma S, Cao Y, Fan W, Huai J, Wo T. Strong simulation: capturing topol-

ogy in graph pattern matching. ACM Transactions on Database Sys-

tems, 2014, 39(1)

15. Eckerson W. Data quality and the bottom line: achieving business suc-

cess through a commitment to high quality data. TDWI Report. 2002

16. Otto B, Weber K. From health checks to the seven sisters: the data

quality journey at bt. Report: BT TR-BE HSG/CC CDQ/8. 2009

17. Fan W, Li J, Ma S, Tang N, Yu W. Interaction between record match-

ing and data repairing. In: Proceedings of the 2011 ACM SIGMOD

International Conference on Management of Data. 2011, 469–480

18. Ullmann J R. An algorithm for subgraph isomorphism. Journal of the

ACM, 1976, 23(1): 31–42

19. Liu C, Chen C, Han J, Yu P S. Gplag: detection of software plagia-

rism by program dependence graph analysis. In: Proceedings of the

12th ACM SIGKDD International Conference on Knowledge Discov-

ery and Data Mining. 2006, 872–881

20. Ferrante J, Ottenstein K J, Warren J D. The program dependence graph

and its use in optimization. ACM Transactions on Programming Lan-

guages and Systems, 1987, 9(3): 319–349

21. Rice M N, Tsotras V J. Graph indexing of road networks for shortest

path queries with label restrictions. Proceedings of the VLDB Endow-

ment, 2010, 4(2): 69–80

22. Cormen T H, Leiserson C E, Rivest R L, Stein C. Introduction to Al-

gorithms. Cambridge: The MIT Press, 2001

23. Chen Z, Shen H T, Zhou X, Yu J X. Monitoring path nearest neighbor

in road networks. In: Proceedings of the 2009 ACM SIGMOD Inter-

national Conference on Management of Data. 2009, 591–602

24. Chowdhury N M M K, Rahman M R, Boutaba R. Virtual network em-

bedding with coordinated node and link mapping. In: Proceedings of

the 28th IEEE Conference on Computer Communications. 2009, 783–

791

25. Conte D, Foggia P, Sansone C, Vento M. Thirty years of graph match-

ing in pattern recognition. International Journal of Pattern Recognition

and Artificial, 2004, 18(3): 265–298

26. Karypis G, Aggarwal R, Kumar V, Shekhar S. Multilevel hypergraph

partitioning: applications in vlsi domain. IEEE Transactions on Very

Large Scale Integration Systems, 1999, 7(1): 69–79

27. Fan W, Li J, Ma S, Tang N, Wu Y. Adding regular expressions to graph

reachability and pattern queries. In: Proceedings of the 27th IEEE Con-

ference on Data Engineering. 2011, 39–50

28. Hansen P B, ed. Classic Operating Systems. New York: Springer, 2001

29. Ramakrishnan R, Gehrke J. Database Management Systems. New

York: McGraw-Hill Higher Education, 2000

30. Abiteboul S, Hull R, Vianu V. Foundations of Databases. Addison-

Wesley, 1995

31. Sakr S, Pardede E, eds. Graph Data Management: Techniques and Ap-

plications. IGI Global, 2011

Shuai MA et al. Big graph search: challenges and techniques 397

32. Malewicz G, Austern M H, Bik A J C, Dehnert J C, Horn I, Leiser N,

Czajkowski G. Pregel: a system for large-scale graph processing. In:

Proceedings of the 2010 ACM SIGMOD International Conference on

Management of Data. 2010, 135–146

33. Yang S, Wu Y, Sun H, Yan X. Schemaless and structureless graph

querying. Proceedings of the VLDB Endowment, 2014, 7(7): 565–576

34. Beitzel S M, Jensen E C, Frieder O, Lewis D D, Chowdhury A, Kolcz

A. Improving automatic query classification via semi-supervised learn-

ing. In: Proceedings of the 5th IEEE International Conference on Data

Mining. 2005, 42–49

35. Shen D, Sun J T, Yang Q, Chen Z. Building bridges for web query

classification. In: Proceedings of the 29th Annual International ACM

SIGIR Conference on Research and Development in Information Re-

trieval. 2006, 131–138

36. Xing Q, Liu Y, Nie J Y, Zhang M, Ma S, Zhang K. Incorporating user

preferences into click models. In: Proceedings of the 22nd ACM In-

ternational Conference on Information and Knowledge Management.

2013, 1301–1310

37. Hu B, Zhang Y, Chen W, Wang G, Yang Q. Characterizing search intent

diversity into click models. In: Proceedings of the 20th International

Conference on World Wide Web. 2011, 17–26

38. Maria G, Symeon P, Athena V. Massive graph management for the Web

and Web 2.0. New Directions in Web Data Management 1. Springer,

2011, 19–58

39. Newman M, Barabási A L, Watts D J. The Structure and Dynamics of

Networks. Princeton: Princeton University Press, 2006

40. Rahm E, Do H H. Data cleaning: problems and current approaches.

IEEE Data Engineering Bulletin, 2000, 23(4): 3–13

41. Fan W, Li J, Ma S, Tang N, Yu W. Towards certain fixes with editing

rules and master data. The International Journal on Very Large Data

Bases, 2012, 21(2): 213–238

42. Henzinger M R, Henzinger T A, Kopke P W. Computing simulations

on finite and infinite graphs. In: Proceedings of the 36th Annual Sym-

posium on Foundations of Computer Science. 1995, 453–462

43. Ramalingam G, Reps T W. A categorized bibliography on incremental

computation. In: Proceedings of the 20th Symposium on Principles of

Programming Languages. 1993, 502–510

44. Ramalingam G, Reps T W. On the computational complexity of dy-

namic graph problems. Theoretical Computer Science, 1996, 158(1):

233–277

45. Dean J, Ghemawat S. Mapreduce: simplified data processing on large

clusters. In: Proceedings of the 6th USENIX Conference on Operating

System Design and Implementation. 2004, 137–149

46. Peng D, Dabek F. Large-scale incremental processing using distributed

transactions and notifications. In: Proceedings of the 9th USENIX

Conference on Operating Systems Design and Implementation. 2010,

1–15

47. Papadimitriou C H. Computational Complexity. Addison-Wesley, 1994

48. Yu W, Aggarwal C C, Ma S, Wang H. On anomalous hotspot discov-

ery in graph streams. In: Proceedings of the 13th IEEE International

Conference on Data Mining. 2013, 1271–1276

49. Aggarwal C C, Wang H. Managing and Mining Graph Data. New York:

Springer, 2010

50. Jordan M I. Divide-and-conquer and statistical inference for big data.

In: Proceedings of the 18th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining. 2012, 4

51. Kleiner A, Talwalkar A, Sarkar P, Jordan M I. The big data boot-

strap. In: Proceedings of the 29th International Conference on Machine

Learning. 2012, 1759–1766

52. Kernighan B W, Lin S. An efficient heuristic procedure for partitioning

graphs. Bell System Technical Journal, 1970, 49(2): 291–307

53. Karypis G, Kumar V. A fast and high quality multilevel scheme for

partitioning irregular graphs. SIAM Journal on Scientific Computing,

1998, 20(1): 359–392

54. Yang S, Yan X, Zong B, Khan A. Towards effective partition manage-

ment for large graphs. In: Proceedings of the 2012 ACM SIGMOD

International Conference on Management of Data. 2012, 517–528

55. Salomon D. Data compression: The Complete Reference. 4th ed. New

York: Springer, 2007

56. Buehrer G, Chellapilla K. A scalable pattern mining approach to Web

graph compression with communities. In: Proceedings of the 2008 In-

ternational Conference on Web Search and Data Mining. 2008, 95–106

57. Adler M, Mitzenmacher M. Towards compressing Web graphs. In: Pro-

ceedings of Data Compression Conference. 2001, 203–212

58. Boldi P, Vigna S. The WebGraph framework I: compression tech-

niques. In: Proceedings of the 13th International Conference on World

Wide Web. 2004, 595–602

59. Feder T, Motwani R. Clique partitions, graph compression and

speeding-up algorithms. Journal of Computer and System Sciences,

1995, 51(2): 261–272

60. Karande C, Chellapilla K, Andersen R. Speeding up algorithms on

compressed Web graphs. In: Proceedings of the 2009 International

Conference on Web Search and Data Mining. 2009, 272–281

61. Fan W, Li J, Wang X, Wu Y. Query preserving graph compression. In:

Proceedings of the 2012 ACM SIGMOD International Conference on

Management of Data. 2012, 157–168

62. Baeza-Yates R A, Ribeiro-Neto B A. Modern Information Retrieval:

the concepts and technology behind search. 2nd ed. Harlow: Pearson

Education Ltd., 2011

63. Klein K, Kriege N, Mutzel P. CT-Index: Fingerprint-based graph in-

dexing combining cycles and trees. In: Proceedings of the 27th IEEE

International Conference on Data Engineering. 2011, 1115–1126

64. Lynch N A. Distributed Algorithms. San Francisco: Morgan Kauf-

mann, 1996

65. Peleg D. Distributed Computing: A Locality-Sensitive Approach.

SIAM, 2000

66. Ma S, Cao Y, Huai J, Wo T. Distributed graph pattern matching. In:

Proceedings of the 21st International Conference on World Wide Web.

2012, 949–958

67. Zaharia M, Chowdhury M, Das T, Dave A, Ma J, McCauly M, Franklin

M J, Shenker S, Stoica I. Resilient distributed datasets: a fault-tolerant

abstraction for in-memory cluster computing. In: Proceedings of the

9th USENIX Conference on Networked Systems Design and Imple-

mentation. 2012, 15–28

68. Gao J, Zhou J, Zhou C, Yu J X. Glog: A high level graph analysis sys-

tem using mapreduce. In: Proceedings of the 30th IEEE International

Conference on Data Engineering. 2014, 544–555

69. Qin L, Yu J X, Chang L, Cheng H, Zhang C, Lin X. Scalable big graph

398 Front. Comput. Sci., 2016, 10(3): 387–398

processing in mapreduce. In: Proceedings of the 2014 ACM SIGMOD

International Conference on Management of Data. 2014, 827–838

70. Xin R S, Gonzalez J E, Franklin M J, Stoica I. Graphx: a resilient dis-

tributed graph system on spark. In: Proceeding of the 1st International

Workshop on Graph Data Management Experiences and Systems. 2013

71. Low Y, Gonzalez J, Kyrola A, Bickson D, Guestrin C, Hellerstein J M.

Distributed graphlab: a framework for machine learning in the cloud.

Proceedings of the VLDB Endowment, 2012, 5(8): 716–727

72. Gonzalez J E, Low Y, Gu H, Bickson D, Guestrin C. Powergraph: dis-

tributed graph-parallel computation on natural graphs. In: Proceedings

of the 10th USENIX Conference on Operating Systems Design and

Implementation. 2012, 17–30

73. Fan W, Huai J. Querying big data: bridging theory and practice. Journal

of Computer Science and Technology, 2014, 29(5): 849–869

Shuai Ma is a professor in the School

of Computer Science and Engineer-

ing, Beihang University, China. He ob-

tained his two PhDs from University

of Edinburgh, UK in 2010, and from

Peking University, China in 2004. He

was a postdoctoral research fellow in

the database group, University of Edin-

burgh, and a summer intern at Bell labs,

Murray Hill, USA in the summer of 2008. His research interests in-

clude database theory and systems, social data analysis, and data in-

tensive computing. He is an Awardee of the NSFC Excellent Young

Scholars Program in 2013. Besides, he is a recipient of the best pa-

per award for VLDB 2010, the Visiting Young Faculty Program of

MRSA in 2012, and the best challenge paper award for WISE 2013.

Jia Li is a PhD student in the School

of Computer Science and Engineer-

ing, Beihang University, China. She

obtained her Bachelor degree in com-

puter science from Beihang Univer-

sity in 2012. Her research interests in-

clude databases, in particular, social

data analysis.

Chunming Hu is an associate profes-

sor at the School of Computer Sci-

ence and Engineering, Beihang Univer-

sity, China. He received his PhD degree

from Beihang University in 2006. His

current research interests include dis-

tributed systems, system virtualization,

large scale data management and pro-

cessing systems.

Xuelian Lin is currently a lecturer

in the School of Computer Science

and Engineering, Beihang University,

China. He received his PhD degree

from Beihang University in 2013. His

current research interests include mid-

dleware and data process systems.

Jinpeng Huai is a professor in the

School of Computer Science and Engi-

neering at Beihang University, China.

He received his PhD in computer

science from Beihang University, in

1993. He is an academician of Chi-

nese Academy of Sciences and the vice

honorary chairman of China Computer

Federation (CCF). His research inter-

ests include big data computing, distributed system, virtual com-

puting, service-oriented computing, trustworthiness and security.

