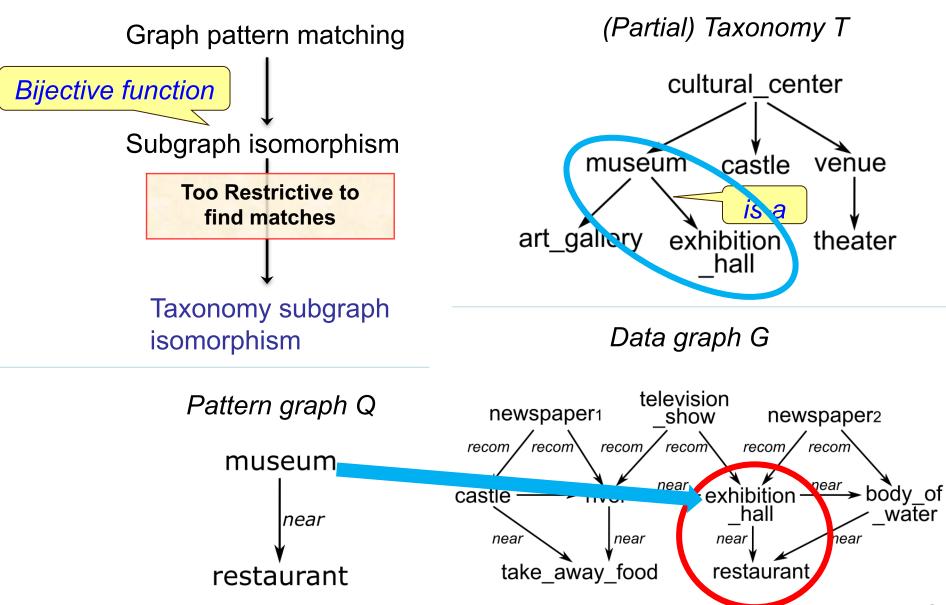


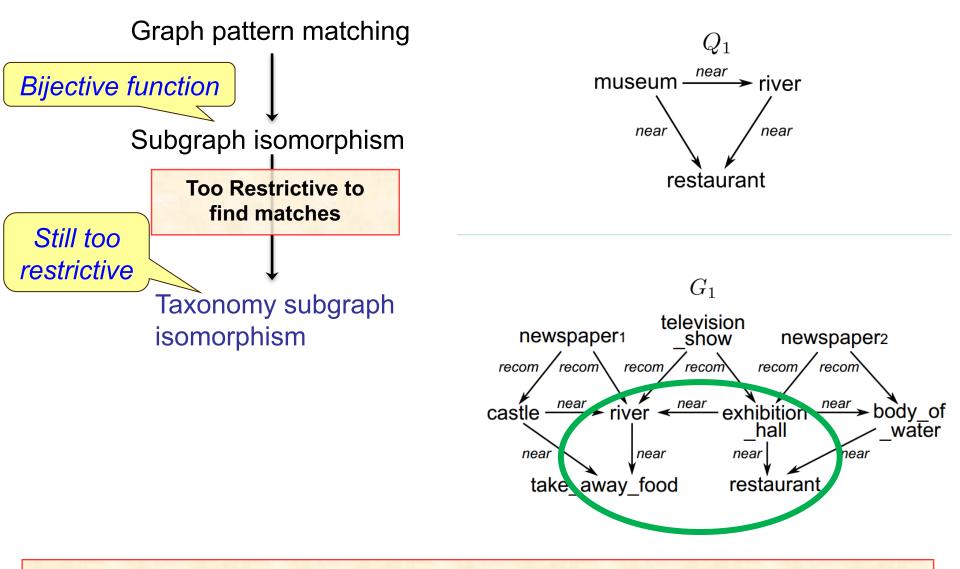
Relaxing Graph Pattern Matching With Explanations

Jia Li¹, Yang Cao², Shuai Ma¹ ¹Beihang University, China ²University of Edinburgh, UK

Background



Background



Relax the topological constraints of taxonomy isomorphism

Taxonomy simulation

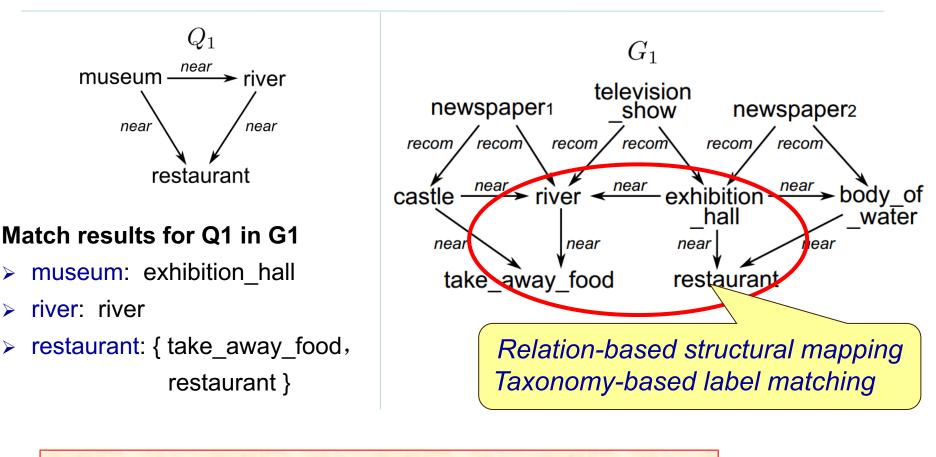
Taxonomy simulation

Given a data graph $G(V_T, E_T, f_T)$, G matches Q w.r.t. T via taxo a left-total binary match relation $R_T \subseteq$ Relaxed label matching

(1) for each $(u, v) \in R^T$, $f(v) \in \text{desc}_T(f_Q(u))$; and

(2) for each edge $e = (u, u') \in E_Q$, there exists an edge $e' = (v, v') \in E$ such that $(u', v') \in R$ and $f_Q(e) = f(e')$.

Taxonomy simulation



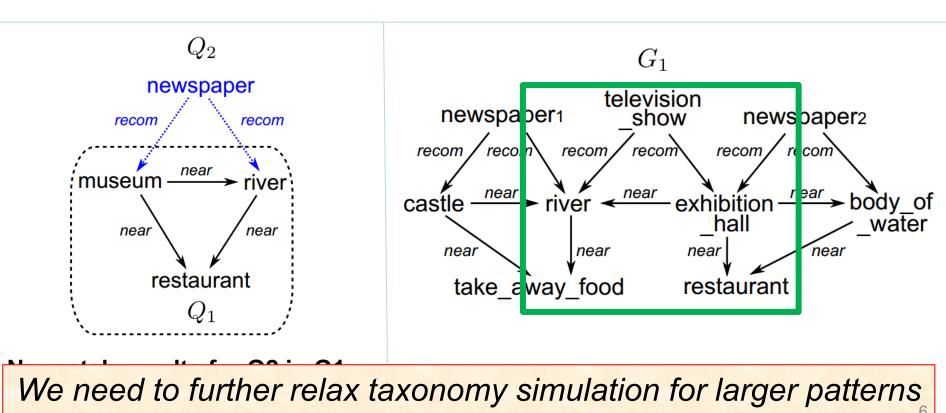
It is in O(|Q||G|) time to compute taxonomy simulation

comes with no price w.r.t graph simulation!

Taxonomy simulation

> An experiment (*percentage of patterns with non-empty match results*)

$ V_Q $	2	4	6	8	10
DBpedia	90%	18%	0%	0%	0%
YAGO	54%	2%	0%	0%	0%



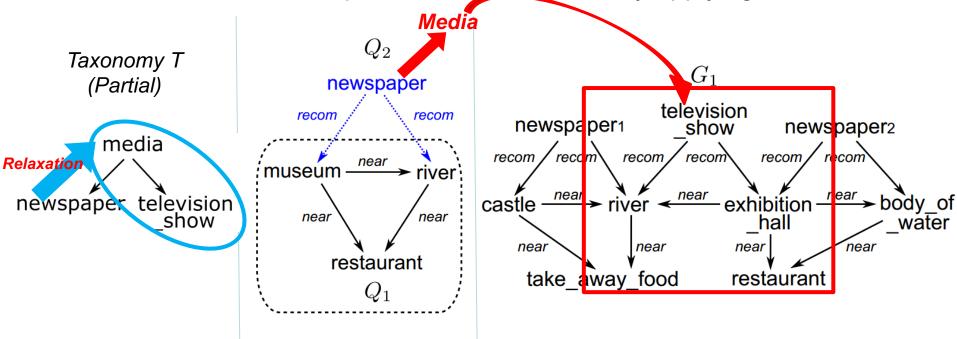
Taxonomy simulation relaxation

Label relaxation

A label relaxation δ w.r.t. a taxonomy T is of form $l \rightarrow l'$ such that l' is an ancestor label of l in T.

Pattern relaxation

- A *pattern relaxation* Δ for Q *w.r.t.* T is a set of label relaxations for Q.
- $Q \oplus \Delta$ is the *relaxed pattern* derived from Q by applying Δ .

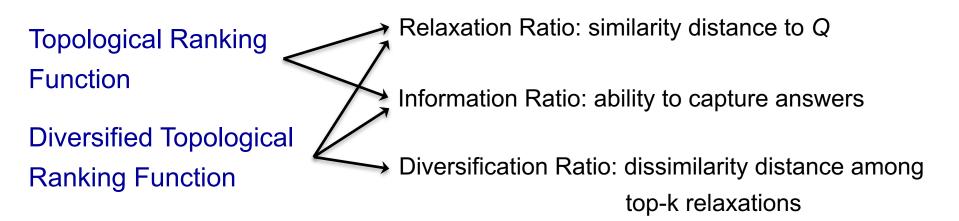


Å

A relaxation framework

- Ranking top-k relaxations.
- Evaluating top-k relaxations.
- Relaxation explanation.

Ranking top-k relaxations



Problems:

- Top-k pattern relaxation problem (kPR): topological ranking
- Diversified top-k relaxation problem(kPR_{DF}): diversified topological ranking

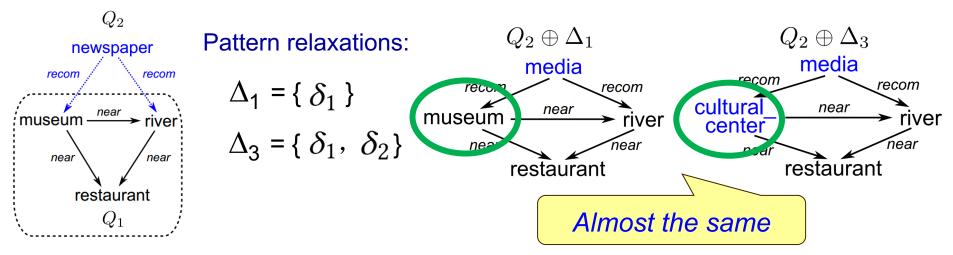
Results:

- kPR problem is in PTIME: in quadratic time, adopt Lawler's procedure for computing top-k results
- kPR_{DF} problem is NP-hard and APX-hard: reduction to well-solved maximum dispersion problem (maxDP)

Evaluating top-k relaxations

Problem:

Given Q, G, T and k pattern relaxations $\Delta_1, \ldots, \Delta_k$, we aim to compute answers to the relaxed patterns $Q \oplus \Delta_1, \ldots, Q \oplus \Delta_k$ in G w.r.t. T.



Label relaxations:

- $\delta_1 = \text{newspaper} \rightarrow \text{media}$
- $\delta_2 = museum \rightarrow cultural_center$
- $\delta_3 = river \rightarrow natural_place$
- $\delta_4 = river \rightarrow body_of_water$

 $\mathsf{Q}_2 \oplus \Delta_1(\mathsf{G}) \subseteq \mathsf{Q}_2 \oplus \Delta_3(\mathsf{G})$

 $Q_2 \oplus \Delta_1(G)$ can be derived from $Q_2 \oplus \Delta_3(G)$ via **bounded decremental taxonomy simulation**

One pass of evaluation to compute both!

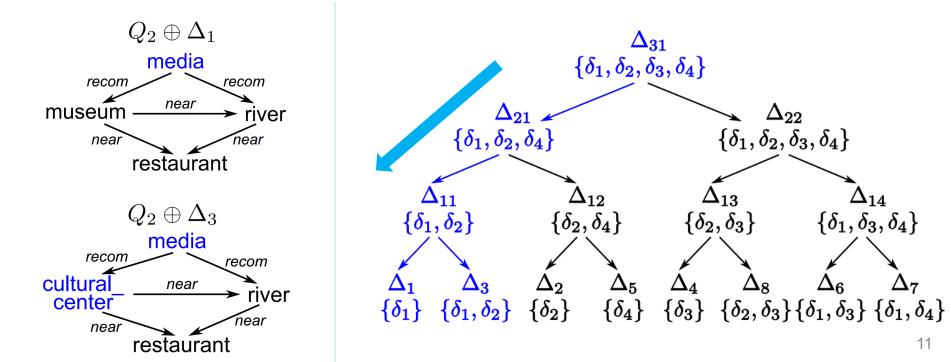
Evaluating top-k relaxations

Problem:

Given Q, G, T and k pattern relaxations $\Delta_1, \ldots, \Delta_k$, we aim to compute answers to the relaxed patterns $Q \oplus \Delta_1, \ldots, Q \oplus \Delta_k$ in G w.r.t. T.

An algorithm to maximize computation sharing

- Minimum pairing tree construction
- Bounded decremental evaluation



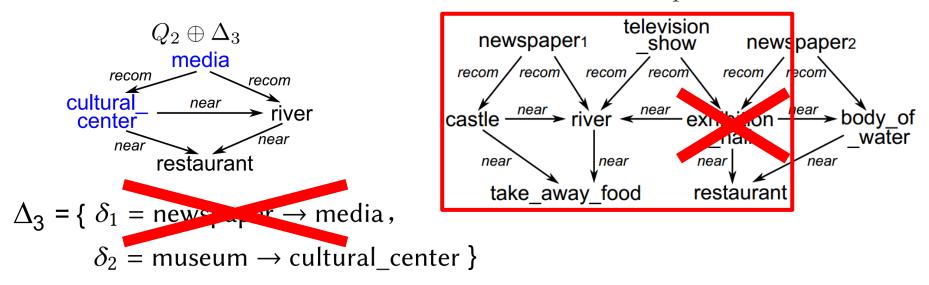
Relaxation Explanation

Can we explain why we return a match by relaxation?

> Explanation:

Given data graph *G*, pattern *Q*, taxonomy *T*, pattern relaxation Δ , and a node *v* in *G* that is in the match result $(Q \oplus \Delta)(G)$ to the relaxed pattern $Q \oplus \Delta$,

an *explanation* for *v w.r.t.* Δ , denoted by E Δ (*v*), is a subset of Δ such that *v* is in $(Q \oplus E\Delta(v))(G)$.



 $\mathsf{E} \Delta_{\mathbf{3}}$ (exhibition_hall) = { δ_1 }

Relaxation Explanation

Can we explain why we return a match by relaxation?

Explanation:

Given data graph *G*, pattern *Q*, taxonomy *T*, pattern relaxation Δ , and a node v in *G* that is in the match result $(Q \oplus \Delta)(G)$ to the relaxed pattern $Q \oplus \Delta$, an *explanation* for v w.r.t. Δ , denoted by $E\Delta(v)$, is a subset of Δ such that v is in $(Q \oplus E\Delta(v))(G)$.

Problem:

```
Input: G, Q, T, \Delta, v.
```

```
Output: minimum explanation for v in \Delta.
```

```
Instances: MRE_{TF}, MRE_{DF}
```

Results:

- ♦ MRE_{TF}: optimal linear algorithm
- MRE_{DF}: NP-hard, parameterized algorithm by M

Å

Experimental setting

Real-life graphs:

(1) YAGO:

```
data graph: (5.13M, 5.39M),
```

taxonomy graph: a forest with 6488 nodes, average height 3.27 (maximum height 13)

(2) DBpedia:

```
data graph: (4.43M, 8.43M),
```

taxonomy graph: a forest with 735 nodes, average height 2.29 (maximum height 6)

> Pattern graphs:

implement a generator for producing random pattern graphs $Q(V_Q, E_Q, f_Q)$, controlled by 3 parameters: $|V_Q|$ varying from 2 to 10, $|E_Q| = [\alpha |V_Q|]$, and the number $|\beta |V_Q|]$ of labels

Effectiveness of taxonomy simulation and relaxation

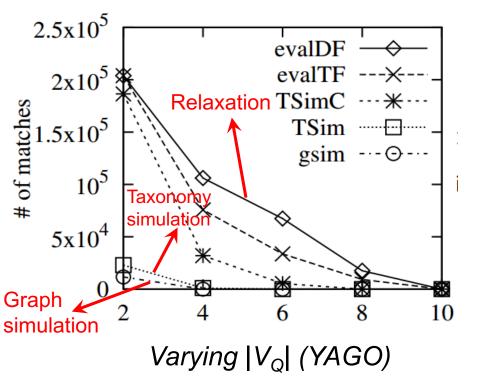
Quality

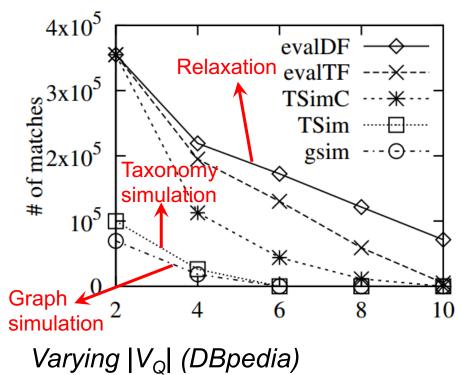
$$\operatorname{acc}(S, Q, G) = \sum_{(u, v) \in S} \operatorname{valid}(u, v) / |S|$$

- DBpedia
 - □ Taxonomy simulation: 98%
 - □ Relaxations: 77%
- YAGO
 - □ Taxonomy simulation: 94%
 - □ *Relaxations:* 71%

Effectiveness of taxonomy simulation and relaxation

> Quantity (number of matches vs. $|V_Q|$)





Taxonomy simulation vs. graph simulation

1,116 vs 0 (|V_Q|=4)

Relaxation vs. taxonomy simulation

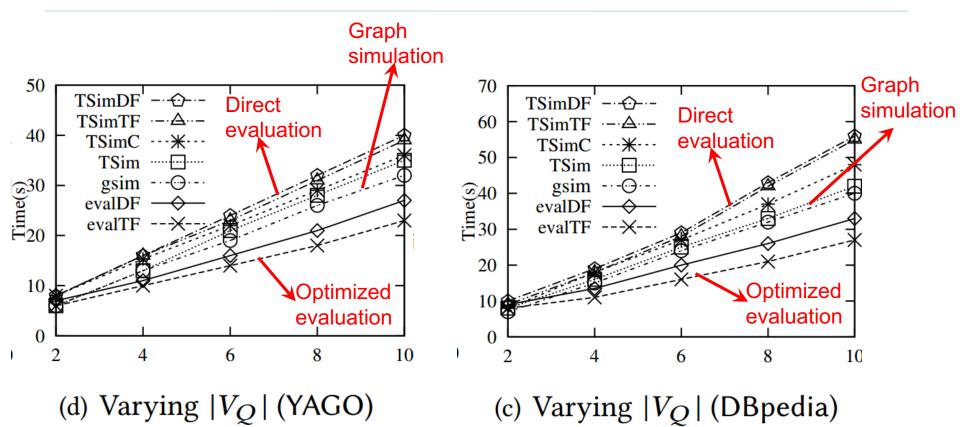
Taxonomy simulation vs. graph simulation

26,242 vs 18,384 (|V_Q|=4)

Relaxation vs. taxonomy simulation

 $|V_{o}| \le 4$: Taxonomy simulation; $|V_{o}| > 4$: Relaxation

Efficiency of relaxation



Direct evaluation / optimized evaluation

- 1.57 times faster (|V_Q|=6, YAGO)
- 1.62 times faster (|V_Q|=6, DBpedia)

Summary

Å

A framework for relaxing graph pattern matching queries

- Taxonomy simulation by combining taxonomy with graph simulation
- Relaxation framework for taxonomy simulation
 - Ranking functions for taxonomy simulation patterns
 - Computing top-k relaxed patterns
 - Evaluating top-k relaxed patterns
 - Relaxation explanation

Thanks!

Subgraph isomorphism and graph simulation

✓ Subgraph isomorphism: Graph G matches pattern Q via subgraph isomorphism denoted by Q⊲G, if there exists a subgraph G_s of G that is isomorphic t *NP-hard* there exists a bijection *h* from V_Q to V_s , such that

(a) edge $(u,u') \in E_Q$ if and only if $(h(u),h(u')) \in E_s$; (b) for each $u \in V_Q$, $I_Q(u)=I(h(u))$.

- ✓ Graph simulation: Graph G matches pattern Q via graph simulation, denoted by Q<G, if there exists a binary match relation R⊆ V_Q×V such that Quadratic time (a) for each (u,v)∈R, I_Q(u)=I(v);
 - (b) for each $u \in V_Q$, there exists $v \in V$, such that (i) $(u,v) \in R$, and (ii) for any edge (u,u') in Q, there exists an edge (v,v') in G such that $(u',v') \in R$.