Approximating Graph Pattern Queries Using Views

Jia Li1, Yang Cao2, Xudong Liu1

1Beihang University, China

2University of Edinburgh, UK
Background

Answering queries using materialized views

- materialize views over the database previously
- speed up query processing

Application

- relational queries
- graph pattern queries
 - SPARQL
 - graph simulation
Challenges

- Answering simulation queries using views

Input: A simulation pattern query Q, a set \mathcal{V} of pattern views V_1, V_2, \ldots, V_n, data graph G, the materialized view answers $V_1(G), V_2(G), \ldots, V_n(G)$ in G.

Question: Can Q be answered using views \mathcal{V}, i.e. the matches $Q(G)$ to Q in G can be computed using nodes and edges in the view answers only.

- Good news: If so, desirable performance
- Bad news: the physical storage is limited, such that the cached views are limited

In many cases, queries cannot be exactly answered using \mathcal{V}

Q can be upper and lower “bounded” via approximations which can be answered using \mathcal{V}

- Approximating answering simulation queries using views

Question: Are there exist two pattern graphs Q_u and Q_l, such that
- both Q_u and Q_l can be answered using \mathcal{V}, and
- for all data graphs G, $Q_l(G) \subseteq Q(G)$ and $Q(G) \subseteq Q_u(G)$.

We call Q_u and Q_l upper and lower approximations of Q w.r.t. \mathcal{V}
An example: graph pattern queries (graph simulation)

Querying a recommendation network:

- (1) Q_1 cannot be answered using view answers.
- (2) There exist Q_u and Q_l can be answered using $I_G(V_1)$, $I_G(V_2)$ and $I_G(V_1)$, $I_G(V_3)$.
- (3) $Q_l(G) \subseteq Q_1(G) \subseteq Q_u(G)$.

Q_1 is “completely” upper and lower approximated by Q_u and Q_l w.r.t. \mathcal{V}
An example: graph pattern queries (graph simulation)

Querying a recommendation network:

(1) Q_2 cannot be answered using view answers.

(2) There exist no Q_u and Q_l that can “completely” upper and lower bound Q_2.

(3) The answers to subgraphs of Q_2 can be bounded, i.e. $Q_l(G) \subseteq Q_1(G) \subseteq Q_u(G)$.

Q_2 is “partially” upper and lower approximated by Q_u and Q_l w.r.t. \mathcal{V}.
Overview

- **Formalization** of upper and lower approximation of pattern queries
 - Simulation queries (graph simulation)
 - Subgraph queries (subgraph isomorphism)

- Investigating **fundamental problems** for simulation queries
 - Existence of (complete) upper approximation: EUA, EUA\(^c\)
 - Existence of (complete) lower approximation: ELA, ELA\(^c\)
 - Closest (complete) upper approximation: CUA, CUA\(^c\)
 - Closest (complete) lower approximation: CLA, CLA\(^c\)

- Developing **algorithms** with provable guarantees for the problems

- Extending the study to subgraph queries
 - Fundamental problems
 - Answering subgraph queries using views
Formalization of upper and lower approximation of pattern queries
Upper and lower approximation

- Query answering using views: A query Q is *answerable* using views in \mathcal{V}, for any data graph G, if $Q(G)$ can be identified by accessing the answers of views in G only.

- Partial and complete query containment:
 - $Q \subseteq_{u} Q_u$: if there exists an induced subgraph Q_s of Q such that $Q_s(G) \subseteq Q_u(G)$
 - $Q_l \subseteq_{L} Q$: if there exists an induced subgraph Q_s of Q such that $Q_l(G) \subseteq Q_s(G)$
 - $Q \subseteq^{c}_{u} Q_u$: when Q_s above is Q
 - $Q_l \subseteq^{c}_{L} Q$: when Q_s above is Q

We call Q is *partially upper contained* in pattern Q_u, *partially lower contains* Q_l, is *completely upper contained* in Q_u, and *completely lower contains* Q_l.

- Upper and lower approximation:
 - Q_u is an *upper* approximation of Q: if (1) $Q \subseteq_{u} Q_u$; (2) Q_u is answerable using \mathcal{V}
 - Q_u is a *complete upper* approximation of Q: if (1) $Q \subseteq^{c}_{u} Q_u$; (2) Q_u is answerable
 - Q_l is a *lower* approximation of Q: if (1) $Q_l \subseteq_{L} Q$; (2) Q_l is answerable using \mathcal{V}
 - Q_l is a *complete lower* approximation of Q: if (1) $Q_l \subseteq^{c}_{L} Q$; (2) Q_l is answerable
An example: graph pattern queries (graph simulation)

Querying a recommendation network:

- (1) $Q_1 \subseteq_c Q_u$, Q_u is answerable using \mathcal{V}, Q_u is a complete upper approximation of Q_1,
- (2) $Q_2 \subseteq_c Q_u$, Q_u is answerable using \mathcal{V}, Q_u is an upper approximation of Q_2,
- (3) $Q_l \subseteq_c Q_1$, Q_l is answerable using \mathcal{V}, Q_l is a complete lower approximation of Q_1,
- (4) $Q_l \subseteq_c Q_2$, Q_l is answerable using \mathcal{V}, Q_l is a lower approximation of Q_2.

<table>
<thead>
<tr>
<th>G</th>
<th>Q_1</th>
<th>Q_2</th>
<th>Q_u</th>
<th>Q_l</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>SD</td>
<td>UD</td>
<td>PM</td>
<td>SD</td>
</tr>
<tr>
<td>ST</td>
<td></td>
<td></td>
<td>ST</td>
<td></td>
</tr>
<tr>
<td>e_1</td>
<td>e_2</td>
<td>e_5</td>
<td>e_7</td>
<td>e_6</td>
</tr>
<tr>
<td>e_3</td>
<td>e_4</td>
<td>e_9</td>
<td></td>
<td>e_8</td>
</tr>
<tr>
<td>e_10</td>
<td></td>
<td></td>
<td></td>
<td>e_{13}</td>
</tr>
<tr>
<td>e_{12}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$I_G[V]$	e_1, e_2, e_5	e_2, e_3, e_{12}	e_{13}, ST_2
V_1	PM	SD	UD
V_2	PM	SD	ST
V_3	SD	UD	ST_1
V_4	UD	BA	ST_2
$I_G[V]$	$e_1, e_{11}, e_{13}, ST_1$	e_7	
Fundamental problems for simulation queries
Existence of approximation

- **Existence of upper approximation (EUA)**: Given a simulation query Q and \mathcal{V}, whether there exists an upper approximation Q_u for Q w.r.t. \mathcal{V}.

- **Existence of complete upper approximation (EUAc)**

For a simulation query Q and a set \mathcal{V} of views,

- there exists an upper approximation for Q using \mathcal{V} iff there exists $V \in \mathcal{V}$ such that the match result $V(Q) \neq \emptyset$
- there exists a complete upper approximation for Q using \mathcal{V} iff $V_Q = \bigcup_{V \in \mathcal{V}} V_{I_Q[V]}$
- EUA and EUAc are quadratic time in $|Q|$ and $|\mathcal{V}|$

- **Existence of lower approximation (ELA)**

- **Existence of complete lower approximation (ELAc)**

For a simulation query Q and a set \mathcal{V} of views,

- there exists a complete lower approximation for Q using \mathcal{V} iff $E_Q \subseteq \bigcup_{V \in \mathcal{V}} E_{I_{\hat{Q}[V]}}$
- ELAc is in $O(|\mathcal{V}|Q^2)$ time
- ELA is NP-complete

Here \hat{Q} is the complete graph of Q.
Closest approximation

- **Closeness:** the closeness \(\text{clo}(Q', Q) \) of \(Q' \) and \(Q \), is the number of edges in \(Q' \) and \(Q \) that are not in the edge-induced maximum common subgraph of \(Q' \) and \(Q \).

- **Closest upper approximation (CUA):** Given a simulation query \(Q \) and \(\mathcal{V} \), find the upper approximation \(Q_u \) that is closest to \(Q \), i.e. for any other \(Q' \), \(\text{clo}(Q_u, Q) \leq \text{clo}(Q', Q) \).

- **Complete closest upper approximation (CUA\(^c\))**

- **Closest lower approximation (CLA)**

- **Complete closest lower approximation (CLA\(^c\))**

For a simulation query \(Q \) and a set \(\mathcal{V} \) of views,

- CUA and CUA\(^c\) are **quadratic time** in \(|Q|\) and \(|\mathcal{V}|\).
- DCLA and DCLA\(^c\) are **NP-complete**.
- OCLA and OCLA\(^c\) are **not in APX**.
Algorithms for problem EUA, EUAc, ELA, ELAc, CUA, CUAc, CLA, CLAc
Computing upper and lower approximation

Algorithms for upper approximation

- Algorithm CUASim^c and EUASim^c is in \(O(|Q||\mathcal{V}|+|V_Q|^2) \) time
- Algorithm CUASim and EUASim is in \(O(|Q||\mathcal{V}|) \) time

Algorithms for lower approximation

- Algorithm ELASim^c is in \(O(|\mathcal{V}||Q|^2) \) time
- Algorithm CLASim^c is a \(\max_{e \in E_Q \setminus E_Q^{occ}(\epsilon)} \cdot \ln(\max_{v \in \mathcal{V}} |E_{l_Q\mathcal{V}} \cap E_Q|) \) - approximation algorithm that always returns a complete lower approximation of \(Q \) w.r.t. \(\mathcal{V} \) in \(O(|\mathcal{V}||Q|^2) \) time when there exists one
- Algorithm CLASim and ELASim is a heuristic algorithm runs in \(O(|\mathcal{V}||Q|^2) \) time
Extending to subgraph queries
Approximation for subgraph queries

Existence of approximation
For a subgraph query Q and a set \mathcal{V} of views

- there exists an upper approximation for Q using \mathcal{V} iff there exists $V \in \mathcal{V}$ such that the match result $V(Q) \neq \emptyset$
- there exists a complete upper approximation for Q using \mathcal{V} iff $V_Q = \bigcup_{V \in \mathcal{V}} V_{I_Q[V]}$
- there exists a complete lower approximation of Q using \mathcal{V} iff $E_Q \subseteq \bigcup_{V \in \mathcal{V}} E_{I_Q[V]}$
- problems EUA, EUAc, ELA, ELAc are all NP-complete

Closest approximation
For a subgraph query Q and a set \mathcal{V} of views

- pattern graph $Q_u(\bigcup_{V \in \mathcal{V}} V_{I_Q[V]}; \bigcup_{V \in \mathcal{V}} E_{I_Q[V]})$ is the closest upper approximation of Q
- if $\bigcup_{V \in \mathcal{V}} V_{I_Q[V]} = V_Q$, $Q^c_u(\bigcup_{V \in \mathcal{V}} V_{I_Q[V]}; \bigcup_{V \in \mathcal{V}} E_{I_Q[V]})$ is the complete closest upper approximation of Q
- problems CUA, CUAc, CLA, CLAc are all NP-complete

Subgraph query answering using views

- Q can be answered using \mathcal{V} iff $E_Q = \bigcup_{V \in \mathcal{V}} E_{I_Q[V]}$
- it is NP-complete to decide whether Q can be answered using \mathcal{V}
Experimental study
Experimental study

- **Experimental setting**
 - **Real-life graphs:** (a) DBpedia: (4.43M, 8.43M) (b) YouTube: (2.03M, 12.22M)
 - **Views:** designed of sizes (2,1), (3,2), (4,3), (4,4), and varied structure of same sizes
 - View answers in total take 32.58% of DBpedia dataset, and 34.29% of YouTube.
 - **Algorithms:** CUAsim\(^c\), CUAsim, CLAsim\(^c\), CLAsim, CUAsiso\(^c\), CUAsiso, CLAsiso\(^c\), CLAsiso;
 QAViso, QAVsim\(^*\); gSim\(^*\), VF2\(^*\);

- **Experimental results**
 - **Percentage of queries approximable using views:**
 - 25% of views are used, 65% (53%) simulation (subgraph) queries on DBpedia
 - 75% of views are used, 88% (81%) simulation (subgraph) queries on YouTube
 - **Accuracy of approximation using views:**
 - three measures: F-measure (F), strong F-measure (F\(_s\)), weak F-measure (F\(_w\))
 - achieve accuracy (F\(_w\)) above 0.79 and 0.86 in all cases.
 - **Speed up of approximation using views:**
 - scale with million graphs within 0.24s and 2.7s for simulation and subgraph queries, when it takes 42s and 5382s to evaluate queries directly.
Summing up
Approximating Graph Pattern Queries Using Views

A framework of query-driven approximation using views (simulation and subgraph)

Given a pattern query \(Q \) and views \(\mathcal{V} \),

a) first check whether \(Q \) can be exactly answered using \(\mathcal{V} \), using algorithm QAViso and QAVsim*;

b) if so, generate query plans that exactly answer \(Q \) using \(\mathcal{V} \) only, by algorithm QAViso and QAVsim*;

c) otherwise, check whether there exist upper and lower approximations of \(Q \), and find the closest approximations \(Q_u \) and \(Q_l \) if exist, via algorithm CUAsim\(^c\), CUAsim, CLAsim\(^c\), CLAsim, CUAiso\(^c\), CUAiso, CLAiso\(^c\) and CLAiso.

d) generate query plans that answer \(Q_u \) and \(Q_l \) by using \(\mathcal{V} \) only, via algorithm QAViso and QAVsim*.

Conclusion

✓ A notion of upper and lower approximation of pattern queries w.r.t. a set of views

✓ The properties and characterizations

✓ Eight fundamental problems for approximating using views, complexity, approximation-hardness

✓ Efficient exact algorithms, approximation algorithms, effective heuristic algorithms for computing closest/existence of, complete/general, upper/lower approximations, for simulation/subgraph queries

✓ Experimental results have verified the effectiveness and efficiency of techniques and framework
Thanks!